力扣第 77 题 组合

题目描述

给定两个整数 nk,返回范围 [1, n] 中所有可能的 k 个数的组合。

  • 你可以按任意顺序返回答案。

示例

示例 1

输入

plaintext 复制代码
n = 4, k = 2

输出

plaintext 复制代码
[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
示例 2

输入

plaintext 复制代码
n = 1, k = 1

输出

plaintext 复制代码
[[1]]

解题思路

1. 回溯法

回溯法是解决组合问题的经典方法,通过递归构建所有可能的组合。

算法步骤

  1. 定义一个函数 backtrack(start, path),其中 start 表示搜索的起点,path 是当前构建的组合。
  2. 如果当前组合 path 的长度等于 k,将其加入结果集中。
  3. 遍历从 startn 的所有数字:
    • 将当前数字加入组合。
    • 递归构建下一个数字的组合。
    • 回溯,移除当前数字。

回溯法的时间复杂度是 O(C(n, k)) ,其中 C ( n , k ) = n ! k ! ( n − k ) ! C(n, k) = \frac{n!}{k!(n-k)!} C(n,k)=k!(n−k)!n!。


实现代码

C语言实现
c 复制代码
#include <stdio.h>
#include <stdlib.h>

// 动态数组结构
typedef struct {
    int** data;
    int size;
    int capacity;
} Array;

void initArray(Array* arr, int capacity) {
    arr->data = (int**)malloc(sizeof(int*) * capacity);
    arr->size = 0;
    arr->capacity = capacity;
}

void addToArray(Array* arr, int* combination, int k) {
    if (arr->size == arr->capacity) {
        arr->capacity *= 2;
        arr->data = (int**)realloc(arr->data, sizeof(int*) * arr->capacity);
    }
    arr->data[arr->size] = (int*)malloc(sizeof(int) * k);
    for (int i = 0; i < k; i++) {
        arr->data[arr->size][i] = combination[i];
    }
    arr->size++;
}

void backtrack(int n, int k, int start, int* combination, int combSize, Array* result) {
    if (combSize == k) {
        addToArray(result, combination, k);
        return;
    }
    for (int i = start; i <= n; i++) {
        combination[combSize] = i;
        backtrack(n, k, i + 1, combination, combSize + 1, result);
    }
}

int** combine(int n, int k, int* returnSize, int** returnColumnSizes) {
    Array result;
    initArray(&result, 16);
    int* combination = (int*)malloc(sizeof(int) * k);
    backtrack(n, k, 1, combination, 0, &result);

    *returnSize = result.size;
    *returnColumnSizes = (int*)malloc(sizeof(int) * result.size);
    for (int i = 0; i < result.size; i++) {
        (*returnColumnSizes)[i] = k;
    }

    free(combination);
    return result.data;
}

int main() {
    int n = 4, k = 2;
    int returnSize;
    int* returnColumnSizes;

    int** combinations = combine(n, k, &returnSize, &returnColumnSizes);

    printf("Combinations:\n");
    for (int i = 0; i < returnSize; i++) {
        printf("[");
        for (int j = 0; j < returnColumnSizes[i]; j++) {
            printf("%d", combinations[i][j]);
            if (j < returnColumnSizes[i] - 1) printf(", ");
        }
        printf("]\n");
        free(combinations[i]); // 释放每个组合的内存
    }

    free(combinations); // 释放结果数组的内存
    free(returnColumnSizes); // 释放列大小数组的内存

    return 0;
}

代码解析

  1. 动态数组

    • 使用 Array 结构来动态存储组合结果。
    • initArray 初始化数组,addToArray 动态增加组合。
  2. 回溯函数

    • backtrack 函数递归构建所有可能的组合。
    • 使用 start 控制数字范围,避免重复组合。
  3. 主函数

    • combine 是主函数,调用回溯并返回结果。
    • 动态分配 returnColumnSizes 以存储每个组合的列数。
  4. 内存管理

    • 在主函数中释放动态分配的内存,避免内存泄漏。

时间复杂度和空间复杂度

  • 时间复杂度

    • 回溯构造所有组合的复杂度是 O(C(n, k)) ,即 n ! k ! ( n − k ) ! \frac{n!}{k!(n-k)!} k!(n−k)!n!。
  • 空间复杂度

    • 临时数组 combination 的空间复杂度为 O(k)
    • 存储结果的空间复杂度为 O ( C ( n , k ) ⋅ k ) O(C(n, k) \cdot k) O(C(n,k)⋅k)
相关推荐
好好学习^按时吃饭4 分钟前
蓝桥杯2024年第十五届省赛真题-R 格式
算法·蓝桥杯
手握风云-26 分钟前
优选算法的妙思之流:分治——快排专题
数据结构·算法
熬夜苦读学习34 分钟前
Linux进程信号
linux·c++·算法
白白糖37 分钟前
二叉树 递归
python·算法·力扣
jyyyx的算法博客1 小时前
Leetcode 857 -- 贪心 | 数学
算法·leetcode·贪心·嗜血
ChoSeitaku1 小时前
NO.64十六届蓝桥杯备战|基础算法-简单贪心|货仓选址|最大子段和|纪念品分组|排座椅|矩阵消除(C++)
算法·矩阵·蓝桥杯
l1n3x1 小时前
编译原理前端-词法分析
算法·编译原理
G皮T1 小时前
【Python Cookbook】字符串和文本(五):递归下降分析器
数据结构·python·正则表达式·字符串·编译原理·词法分析·语法解析
一只天蝎的晋升之路1 小时前
基础算法之:动态规划
算法·动态规划
KangkangLoveNLP2 小时前
手动实现一个迷你Llama:使用SentencePiece实现自己的tokenizer
人工智能·深度学习·学习·算法·transformer·llama