openssl使用哈希算法生成随机密钥

文章目录


一、openssl中随机数函数

OpenSSL 提供了一套功能强大的随机数生成函数,用于生成高质量的伪随机数。随机数在密码学中至关重要,广泛用于密钥生成、盐值生成、初始化向量 (IV) 等安全操作。


OpenSSL 随机数函数概览

1. 核心随机数函数
函数名称 描述
RAND_bytes 生成高质量的伪随机字节。
RAND_priv_bytes 生成高质量伪随机字节,推荐用于对安全性要求更高的密钥生成。
RAND_pseudo_bytes 生成伪随机字节(不保证是加密级别安全,已被弃用)。
RAND_seed 手动为伪随机数生成器添加种子值。
RAND_add 添加额外的熵(种子数据)到伪随机数生成器的池中。
RAND_status 检查随机数生成器是否被正确初始化。
RAND_poll 自动收集熵以初始化随机数生成器(由内部调用)。

常用函数详解

1. RAND_bytes
  • 作用:生成高质量的加密级别伪随机字节。

  • 函数原型

    c 复制代码
    int RAND_bytes(unsigned char *buf, int num);
    • buf:指向用于存储随机字节的缓冲区。
    • num:要生成的随机字节数。
    • 返回值
      • 成功返回 1
      • 如果随机数生成器未正确初始化,返回 0
  • 示例

    c 复制代码
    unsigned char random_bytes[16];
    if (RAND_bytes(random_bytes, sizeof(random_bytes)) == 1) {
        printf("生成的随机数:");
        for (int i = 0; i < sizeof(random_bytes); i++) {
            printf("%02x", random_bytes[i]);
        }
        printf("\n");
    } else {
        fprintf(stderr, "随机数生成失败!\n");
    }

2. RAND_priv_bytes
  • 作用 :与 RAND_bytes 类似,但专为高安全性应用设计(如密钥生成)。可能在实现中增加额外的保护。

  • 函数原型

    c 复制代码
    int RAND_priv_bytes(unsigned char *buf, int num);
  • 使用方法与 RAND_bytes 一致。


3. RAND_seedRAND_add
  • 作用 :为随机数生成器添加种子值或熵,增强其随机性。

    OpenSSL 的随机数生成器依赖熵池,通常会自动初始化,但可以通过这些函数手动添加种子数据。

  • 函数原型

    c 复制代码
    void RAND_seed(const void *buf, int num);
    void RAND_add(const void *buf, int num, double entropy);
    • buf:种子数据。
    • num:种子数据的字节数。
    • entropy:种子中估计的熵(单位是比特,范围 0 到 8*num)。
  • 示例

    c 复制代码
    unsigned char seed_data[] = {0x12, 0x34, 0x56, 0x78};
    RAND_seed(seed_data, sizeof(seed_data));

4. RAND_status
  • 作用:检查随机数生成器是否被正确初始化。

  • 函数原型

    c 复制代码
    int RAND_status(void);
    • 返回值
      • 如果熵池已初始化且可用随机性足够,返回 1
      • 否则返回 0
  • 示例

    c 复制代码
    if (RAND_status() == 1) {
        printf("随机数生成器已初始化!\n");
    } else {
        printf("随机数生成器未初始化!\n");
    }

随机数生成器的熵池

OpenSSL 的随机数生成器使用熵池作为随机性的来源,依赖于系统提供的随机性(如 /dev/random/dev/urandom)。在大多数情况下,OpenSSL 会自动处理熵池的初始化,但开发者可以通过 RAND_seedRAND_add 提供额外的种子数据。


常见用例

  1. 生成随机密钥

    c 复制代码
    unsigned char key[32]; // 256 位密钥
    if (RAND_bytes(key, sizeof(key)) == 1) {
        printf("密钥生成成功!\n");
    }
  2. 生成随机初始化向量 (IV)

    c 复制代码
    unsigned char iv[16]; // 128 位 IV
    if (RAND_bytes(iv, sizeof(iv)) == 1) {
        printf("IV 生成成功!\n");
    }
  3. 增强随机数生成器熵

    c 复制代码
    unsigned char extra_entropy[] = {0xde, 0xad, 0xbe, 0xef};
    RAND_add(extra_entropy, sizeof(extra_entropy), 4.0); // 添加 4 比特熵

注意事项

  1. 使用 RAND_bytesRAND_priv_bytes

    • 推荐使用这两个函数生成随机数,因为它们提供加密级别的安全性。
    • 不建议使用 RAND_pseudo_bytes,因为它已被弃用。
  2. 熵的重要性

    • 高质量的熵是随机数生成的核心。如果熵不足,生成的随机数可能会被预测,降低安全性。
  3. 平台依赖

    • OpenSSL 的随机数生成器在不同平台上依赖系统的熵源,例如 /dev/urandom 或 Windows 的 CryptGenRandom。

OpenSSL 的随机数生成函数设计灵活,满足了从简单随机需求到高安全性应用的各种场景。如果需要更高安全性的随机数生成,推荐使用 RAND_priv_bytes

二、使用哈希算法生成随机的密钥

c 复制代码
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/rand.h>
#include <openssl/evp.h>

#define SEED_LENGTH 32  // 随机种子长度(32 字节 = 256 位)
#define KEY_LENGTH 32   // 密钥长度(32 字节 = 256 位)

// 使用随机种子和哈希算法生成密钥
void generate_hashed_key(unsigned char *key, size_t key_length) {
    unsigned char seed[SEED_LENGTH]; // 随机种子

    // 生成随机种子
    if (!RAND_bytes(seed, sizeof(seed))) {
        fprintf(stderr, "随机种子生成失败!\n");
        exit(EXIT_FAILURE);
    }

    // 打印随机种子(调试用)
    printf("随机种子: ");
    for (size_t i = 0; i < sizeof(seed); i++) {
        printf("%02x", seed[i]);
    }
    printf("\n");

    // 使用 SHA-256 哈希函数对种子进行散列
    EVP_MD_CTX *mdctx = EVP_MD_CTX_new(); // 创建哈希上下文
    if (!mdctx) {
        fprintf(stderr, "创建哈希上下文失败!\n");
        exit(EXIT_FAILURE);
    }

    // 初始化哈希计算(使用 SHA-256)
    if (EVP_DigestInit_ex(mdctx, EVP_sha256(), NULL) != 1) {
        fprintf(stderr, "哈希初始化失败!\n");
        EVP_MD_CTX_free(mdctx);
        exit(EXIT_FAILURE);
    }

    // 提供数据进行哈希计算
    if (EVP_DigestUpdate(mdctx, seed, sizeof(seed)) != 1) {
        fprintf(stderr, "哈希更新失败!\n");
        EVP_MD_CTX_free(mdctx);
        exit(EXIT_FAILURE);
    }

    // 获取哈希结果
    unsigned char hash[EVP_MAX_MD_SIZE];
    unsigned int hash_len;
    if (EVP_DigestFinal_ex(mdctx, hash, &hash_len) != 1) {
        fprintf(stderr, "哈希计算失败!\n");
        EVP_MD_CTX_free(mdctx);
        exit(EXIT_FAILURE);
    }

    // 释放哈希上下文
    EVP_MD_CTX_free(mdctx);

    // 取哈希结果的前 key_length 字节作为密钥
    if (key_length > hash_len) {
        fprintf(stderr, "密钥长度超出哈希值长度!\n");
        exit(EXIT_FAILURE);
    }
    memcpy(key, hash, key_length);

    // 打印生成的密钥(调试用)
    printf("生成的密钥: ");
    for (size_t i = 0; i < key_length; i++) {
        printf("%02x", key[i]);
    }
    printf("\n");
}

int main() {
    unsigned char key[KEY_LENGTH]; // 存储生成的密钥

    // 调用密钥生成函数
    generate_hashed_key(key, KEY_LENGTH);

    return 0;
}

运行两次的结果:

这里可以看到每次运行后生成的密钥都是不一样的,这样就保证了密钥的不一致性。

相关推荐
小孟Java攻城狮1 小时前
leetcode-不同路径问题
算法·leetcode·职场和发展
查理零世1 小时前
算法竞赛之差分进阶——等差数列差分 python
python·算法·差分
小猿_004 小时前
C语言程序设计十大排序—插入排序
c语言·算法·排序算法
熊文豪6 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
siy23338 小时前
[c语言日寄]结构体的使用及其拓展
c语言·开发语言·笔记·学习·算法
吴秋霖8 小时前
最新百应abogus纯算还原流程分析
算法·abogus
灶龙9 小时前
浅谈 PID 控制算法
c++·算法
菜还不练就废了9 小时前
蓝桥杯算法日常|c\c++常用竞赛函数总结备用
c++·算法·蓝桥杯
金色旭光9 小时前
目标检测高频评价指标的计算过程
算法·yolo
he1010110 小时前
1/20赛后总结
算法·深度优先·启发式算法·广度优先·宽度优先