Leetcode 3373. Maximize the Number of Target Nodes After Connecting Trees II

  • [Leetcode 3373. Maximize the Number of Target Nodes After Connecting Trees II](#Leetcode 3373. Maximize the Number of Target Nodes After Connecting Trees II)
    • [1. 接替思路](#1. 接替思路)
    • [2. 代码实现](#2. 代码实现)

1. 接替思路

这一题和前一题Leetcode 3372其实整体思路上并没有啥太大的区别,都是考察两棵树上各自每一个节点作为根节点时满足条件的节点个数,然后相加。

唯一的区别在于,题目Leetcode 3372要求的是到根节点深度不超过 k k k,而这道题要求的是深度为偶数的节点个数,两者大差不差,都是用一个遍历即可。

但是这里由于只需要考虑奇偶性,因此我们可以用缓存来减小重复计算,优化整体的执行效率。

2. 代码实现

给出python代码实现如下:

python 复制代码
class Solution:
    def maxTargetNodes(self, edges1: List[List[int]], edges2: List[List[int]]) -> List[int]:
        graph1 = defaultdict(list)
        for u, v in edges1:
            graph1[u].append(v)
            graph1[v].append(u)

        graph2 = defaultdict(list)
        for u, v in edges2:
            graph2[u].append(v)
            graph2[v].append(u)
            
        n, m = len(edges1) + 1, len(edges2) + 1
        
        @lru_cache(None)
        def dfs1(u, p, is_valid):
            if is_valid:
                if (p != -1 and len(graph1[u]) == 1) or (p == -1 and len(graph1[u]) == 0):
                    return 1
                else:
                    return 1 + sum(dfs1(v, u, False) for v in graph1[u] if v != p) 
            else:
                if (p != -1 and len(graph1[u]) == 1) or (p == -1 and len(graph1[u]) == 0):
                    return 0
                else:
                    return sum(dfs1(v, u, True) for v in graph1[u] if v != p) 
        
        @lru_cache(None)
        def dfs2(u, p, is_valid):
            if is_valid:
                if (p != -1 and len(graph2[u]) == 1) or (p == -1 and len(graph2[u]) == 0):
                    return 1
                else:
                    return 1 + sum(dfs2(v, u, False) for v in graph2[u] if v != p) 
            else:
                if (p != -1 and len(graph2[u]) == 1) or (p == -1 and len(graph2[u]) == 0):
                    return 0
                else:
                    return sum(dfs2(v, u, True) for v in graph2[u] if v != p) 
        
        s1 = [dfs1(u, -1, True) for u in range(n)]
        s2 = [dfs2(u, -1, False) for u in range(m)]
        s = max(s2)
        return [x+s for x in s1] 

提交代码评测得到:耗时4387ms,占用内存386.5MB。

相关推荐
LYFlied11 小时前
【每日算法】LeetCode 1143. 最长公共子序列
前端·算法·leetcode·职场和发展·动态规划
长安er12 小时前
LeetCode 20/155/394/739/84/42/单调栈核心原理与经典题型全解析
数据结构·算法·leetcode·动态规划·
LYFlied18 小时前
【每日算法】LeetCode 5. 最长回文子串(动态规划)
数据结构·算法·leetcode·职场和发展·动态规划
Espresso Macchiato1 天前
Leetcode 3791. Number of Balanced Integers in a Range
leetcode hard·leetcode周赛482·leetcode 3791
Espresso Macchiato2 天前
Leetcode 3782. Last Remaining Integer After Alternating Deletion Operations
迭代·leetcode hard·leetcode双周赛172·leetcode 3782
qq_433554542 天前
C++区间DP
c++·算法·动态规划
Espresso Macchiato2 天前
Leetcode 3768. Minimum Inversion Count in Subarrays of Fixed Length
滑动窗口·leetcode hard·leetcode双周赛171·leetcode 3768
Espresso Macchiato2 天前
Leetcode 3785. Minimum Swaps to Avoid Forbidden Values
leetcode hard·leetcode周赛481·leetcode 3785
Wuliwuliii2 天前
闵可夫斯基和、需存储的最小状态集
c++·算法·动态规划·闵可夫斯基和
byzh_rc2 天前
[算法设计与分析-从入门到入土] 贪心算法
算法·动态规划