Leetcode 3373. Maximize the Number of Target Nodes After Connecting Trees II

  • [Leetcode 3373. Maximize the Number of Target Nodes After Connecting Trees II](#Leetcode 3373. Maximize the Number of Target Nodes After Connecting Trees II)
    • [1. 接替思路](#1. 接替思路)
    • [2. 代码实现](#2. 代码实现)

1. 接替思路

这一题和前一题Leetcode 3372其实整体思路上并没有啥太大的区别,都是考察两棵树上各自每一个节点作为根节点时满足条件的节点个数,然后相加。

唯一的区别在于,题目Leetcode 3372要求的是到根节点深度不超过 k k k,而这道题要求的是深度为偶数的节点个数,两者大差不差,都是用一个遍历即可。

但是这里由于只需要考虑奇偶性,因此我们可以用缓存来减小重复计算,优化整体的执行效率。

2. 代码实现

给出python代码实现如下:

python 复制代码
class Solution:
    def maxTargetNodes(self, edges1: List[List[int]], edges2: List[List[int]]) -> List[int]:
        graph1 = defaultdict(list)
        for u, v in edges1:
            graph1[u].append(v)
            graph1[v].append(u)

        graph2 = defaultdict(list)
        for u, v in edges2:
            graph2[u].append(v)
            graph2[v].append(u)
            
        n, m = len(edges1) + 1, len(edges2) + 1
        
        @lru_cache(None)
        def dfs1(u, p, is_valid):
            if is_valid:
                if (p != -1 and len(graph1[u]) == 1) or (p == -1 and len(graph1[u]) == 0):
                    return 1
                else:
                    return 1 + sum(dfs1(v, u, False) for v in graph1[u] if v != p) 
            else:
                if (p != -1 and len(graph1[u]) == 1) or (p == -1 and len(graph1[u]) == 0):
                    return 0
                else:
                    return sum(dfs1(v, u, True) for v in graph1[u] if v != p) 
        
        @lru_cache(None)
        def dfs2(u, p, is_valid):
            if is_valid:
                if (p != -1 and len(graph2[u]) == 1) or (p == -1 and len(graph2[u]) == 0):
                    return 1
                else:
                    return 1 + sum(dfs2(v, u, False) for v in graph2[u] if v != p) 
            else:
                if (p != -1 and len(graph2[u]) == 1) or (p == -1 and len(graph2[u]) == 0):
                    return 0
                else:
                    return sum(dfs2(v, u, True) for v in graph2[u] if v != p) 
        
        s1 = [dfs1(u, -1, True) for u in range(n)]
        s2 = [dfs2(u, -1, False) for u in range(m)]
        s = max(s2)
        return [x+s for x in s1] 

提交代码评测得到:耗时4387ms,占用内存386.5MB。

相关推荐
橘颂TA16 小时前
【剑斩OFFER】算法的暴力美学——只出现一次的数字 ||
算法·leetcode·动态规划
草莓熊Lotso2 天前
《算法闯关指南:动态规划算法--斐波拉契数列模型》--01.第N个泰波拉契数,02.三步问题
开发语言·c++·经验分享·笔记·其他·算法·动态规划
稚辉君.MCA_P8_Java3 天前
Gemini永久会员 Java动态规划
java·数据结构·leetcode·排序算法·动态规划
少许极端3 天前
算法奇妙屋(十四)-简单多状态dp问题
算法·动态规划·图解算法·简单多状态dp·打家劫舍问题·买卖股票问题全解
稚辉君.MCA_P8_Java3 天前
Gemini永久会员 Go 实现动态规划
数据结构·后端·算法·golang·动态规划
利刃大大3 天前
【动态规划:背包问题】完全平方数
c++·算法·动态规划·背包问题·完全背包
醉颜凉4 天前
环形房屋如何 “安全劫舍”?动态规划解题逻辑与技巧
c语言·算法·动态规划
mjhcsp4 天前
C++ 动态规划(Dynamic Programming)详解:从理论到实战
c++·动态规划·1024程序员节
大雨淅淅4 天前
一文搞懂动态规划:从入门到精通
算法·动态规划
司铭鸿5 天前
化学式解析的算法之美:从原子计数到栈的巧妙运用
linux·运维·服务器·算法·动态规划·代理模式·哈希算法