Leetcode 3373. Maximize the Number of Target Nodes After Connecting Trees II

  • [Leetcode 3373. Maximize the Number of Target Nodes After Connecting Trees II](#Leetcode 3373. Maximize the Number of Target Nodes After Connecting Trees II)
    • [1. 接替思路](#1. 接替思路)
    • [2. 代码实现](#2. 代码实现)

1. 接替思路

这一题和前一题Leetcode 3372其实整体思路上并没有啥太大的区别,都是考察两棵树上各自每一个节点作为根节点时满足条件的节点个数,然后相加。

唯一的区别在于,题目Leetcode 3372要求的是到根节点深度不超过 k k k,而这道题要求的是深度为偶数的节点个数,两者大差不差,都是用一个遍历即可。

但是这里由于只需要考虑奇偶性,因此我们可以用缓存来减小重复计算,优化整体的执行效率。

2. 代码实现

给出python代码实现如下:

python 复制代码
class Solution:
    def maxTargetNodes(self, edges1: List[List[int]], edges2: List[List[int]]) -> List[int]:
        graph1 = defaultdict(list)
        for u, v in edges1:
            graph1[u].append(v)
            graph1[v].append(u)

        graph2 = defaultdict(list)
        for u, v in edges2:
            graph2[u].append(v)
            graph2[v].append(u)
            
        n, m = len(edges1) + 1, len(edges2) + 1
        
        @lru_cache(None)
        def dfs1(u, p, is_valid):
            if is_valid:
                if (p != -1 and len(graph1[u]) == 1) or (p == -1 and len(graph1[u]) == 0):
                    return 1
                else:
                    return 1 + sum(dfs1(v, u, False) for v in graph1[u] if v != p) 
            else:
                if (p != -1 and len(graph1[u]) == 1) or (p == -1 and len(graph1[u]) == 0):
                    return 0
                else:
                    return sum(dfs1(v, u, True) for v in graph1[u] if v != p) 
        
        @lru_cache(None)
        def dfs2(u, p, is_valid):
            if is_valid:
                if (p != -1 and len(graph2[u]) == 1) or (p == -1 and len(graph2[u]) == 0):
                    return 1
                else:
                    return 1 + sum(dfs2(v, u, False) for v in graph2[u] if v != p) 
            else:
                if (p != -1 and len(graph2[u]) == 1) or (p == -1 and len(graph2[u]) == 0):
                    return 0
                else:
                    return sum(dfs2(v, u, True) for v in graph2[u] if v != p) 
        
        s1 = [dfs1(u, -1, True) for u in range(n)]
        s2 = [dfs2(u, -1, False) for u in range(m)]
        s = max(s2)
        return [x+s for x in s1] 

提交代码评测得到:耗时4387ms,占用内存386.5MB。

相关推荐
浩少70219 小时前
LeetCode-22day:多维动态规划
算法·leetcode·动态规划
拼好饭和她皆失1 天前
算法加训 动态规划熟悉30题 ---下
算法·动态规划
天选之女wow3 天前
【LeetCode】动态规划——542.01 矩阵
leetcode·矩阵·动态规划
等风来不如迎风去4 天前
【动态规划】309. 买卖股票的最佳时机含冷冻期及动态规划模板
算法·动态规划
Jasmine_llq5 天前
《CF1120D Power Tree》
动态规划·dp·深度优先搜索(dfs)·广度优先搜索(bfs)·树结构处理技术·状态回溯技术
岁忧8 天前
(nice!!!)(LeetCode 每日一题) 1277. 统计全为 1 的正方形子矩阵 (动态规划)
java·c++·算法·leetcode·矩阵·go·动态规划
我家大宝最可爱9 天前
动态规划:入门思考篇
算法·动态规划·代理模式
自信的小螺丝钉9 天前
Leetcode 343. 整数拆分 动态规划
算法·leetcode·动态规划
Tisfy10 天前
LeetCode 837.新 21 点:动态规划+滑动窗口
数学·算法·leetcode·动态规划·dp·滑动窗口·概率
利刃大大10 天前
【动态规划:路径问题】最小路径和 && 地下城游戏
算法·动态规划·cpp·路径问题