Leetcode 3373. Maximize the Number of Target Nodes After Connecting Trees II

  • [Leetcode 3373. Maximize the Number of Target Nodes After Connecting Trees II](#Leetcode 3373. Maximize the Number of Target Nodes After Connecting Trees II)
    • [1. 接替思路](#1. 接替思路)
    • [2. 代码实现](#2. 代码实现)

1. 接替思路

这一题和前一题Leetcode 3372其实整体思路上并没有啥太大的区别,都是考察两棵树上各自每一个节点作为根节点时满足条件的节点个数,然后相加。

唯一的区别在于,题目Leetcode 3372要求的是到根节点深度不超过 k k k,而这道题要求的是深度为偶数的节点个数,两者大差不差,都是用一个遍历即可。

但是这里由于只需要考虑奇偶性,因此我们可以用缓存来减小重复计算,优化整体的执行效率。

2. 代码实现

给出python代码实现如下:

python 复制代码
class Solution:
    def maxTargetNodes(self, edges1: List[List[int]], edges2: List[List[int]]) -> List[int]:
        graph1 = defaultdict(list)
        for u, v in edges1:
            graph1[u].append(v)
            graph1[v].append(u)

        graph2 = defaultdict(list)
        for u, v in edges2:
            graph2[u].append(v)
            graph2[v].append(u)
            
        n, m = len(edges1) + 1, len(edges2) + 1
        
        @lru_cache(None)
        def dfs1(u, p, is_valid):
            if is_valid:
                if (p != -1 and len(graph1[u]) == 1) or (p == -1 and len(graph1[u]) == 0):
                    return 1
                else:
                    return 1 + sum(dfs1(v, u, False) for v in graph1[u] if v != p) 
            else:
                if (p != -1 and len(graph1[u]) == 1) or (p == -1 and len(graph1[u]) == 0):
                    return 0
                else:
                    return sum(dfs1(v, u, True) for v in graph1[u] if v != p) 
        
        @lru_cache(None)
        def dfs2(u, p, is_valid):
            if is_valid:
                if (p != -1 and len(graph2[u]) == 1) or (p == -1 and len(graph2[u]) == 0):
                    return 1
                else:
                    return 1 + sum(dfs2(v, u, False) for v in graph2[u] if v != p) 
            else:
                if (p != -1 and len(graph2[u]) == 1) or (p == -1 and len(graph2[u]) == 0):
                    return 0
                else:
                    return sum(dfs2(v, u, True) for v in graph2[u] if v != p) 
        
        s1 = [dfs1(u, -1, True) for u in range(n)]
        s2 = [dfs2(u, -1, False) for u in range(m)]
        s = max(s2)
        return [x+s for x in s1] 

提交代码评测得到:耗时4387ms,占用内存386.5MB。

相关推荐
_小苔藓_7 小时前
初探动态规划--记忆化搜索
深度优先·动态规划·代理模式
维齐洛波奇特利(male)12 小时前
(动态规划 完全背包 **)leetcode279完全平方数
算法·动态规划
lisanndesu1 天前
动态规划
算法·动态规划
诚丞成2 天前
斐波那契数列模型:在动态规划的丝绸之路上追寻斐波那契的足迹(下)
算法·动态规划
不想编程小谭2 天前
力扣LeetCode: 931 下降路径最小和
数据结构·c++·算法·leetcode·动态规划
Perishell2 天前
无人机避障——感知篇(采用Livox-Mid360激光雷达获取点云数据显示)
linux·机器人·动态规划·无人机·slam
诚丞成3 天前
斐波那契数列模型:在动态规划的丝绸之路上追寻斐波那契的足迹(上)
算法·动态规划
孑么4 天前
力扣 买卖股票的最佳时机
算法·leetcode·职场和发展·贪心算法·动态规划
孑么4 天前
力扣 跳跃游戏 II
java·算法·leetcode·职场和发展·贪心算法·动态规划
JWASX5 天前
【动态规划】详解 0-1背包问题
算法·动态规划·0-1背包