Leetcode 3373. Maximize the Number of Target Nodes After Connecting Trees II

  • [Leetcode 3373. Maximize the Number of Target Nodes After Connecting Trees II](#Leetcode 3373. Maximize the Number of Target Nodes After Connecting Trees II)
    • [1. 接替思路](#1. 接替思路)
    • [2. 代码实现](#2. 代码实现)

1. 接替思路

这一题和前一题Leetcode 3372其实整体思路上并没有啥太大的区别,都是考察两棵树上各自每一个节点作为根节点时满足条件的节点个数,然后相加。

唯一的区别在于,题目Leetcode 3372要求的是到根节点深度不超过 k k k,而这道题要求的是深度为偶数的节点个数,两者大差不差,都是用一个遍历即可。

但是这里由于只需要考虑奇偶性,因此我们可以用缓存来减小重复计算,优化整体的执行效率。

2. 代码实现

给出python代码实现如下:

python 复制代码
class Solution:
    def maxTargetNodes(self, edges1: List[List[int]], edges2: List[List[int]]) -> List[int]:
        graph1 = defaultdict(list)
        for u, v in edges1:
            graph1[u].append(v)
            graph1[v].append(u)

        graph2 = defaultdict(list)
        for u, v in edges2:
            graph2[u].append(v)
            graph2[v].append(u)
            
        n, m = len(edges1) + 1, len(edges2) + 1
        
        @lru_cache(None)
        def dfs1(u, p, is_valid):
            if is_valid:
                if (p != -1 and len(graph1[u]) == 1) or (p == -1 and len(graph1[u]) == 0):
                    return 1
                else:
                    return 1 + sum(dfs1(v, u, False) for v in graph1[u] if v != p) 
            else:
                if (p != -1 and len(graph1[u]) == 1) or (p == -1 and len(graph1[u]) == 0):
                    return 0
                else:
                    return sum(dfs1(v, u, True) for v in graph1[u] if v != p) 
        
        @lru_cache(None)
        def dfs2(u, p, is_valid):
            if is_valid:
                if (p != -1 and len(graph2[u]) == 1) or (p == -1 and len(graph2[u]) == 0):
                    return 1
                else:
                    return 1 + sum(dfs2(v, u, False) for v in graph2[u] if v != p) 
            else:
                if (p != -1 and len(graph2[u]) == 1) or (p == -1 and len(graph2[u]) == 0):
                    return 0
                else:
                    return sum(dfs2(v, u, True) for v in graph2[u] if v != p) 
        
        s1 = [dfs1(u, -1, True) for u in range(n)]
        s2 = [dfs2(u, -1, False) for u in range(m)]
        s = max(s2)
        return [x+s for x in s1] 

提交代码评测得到:耗时4387ms,占用内存386.5MB。

相关推荐
睡不醒的kun3 天前
leetcode算法刷题的第三十四天
数据结构·c++·算法·leetcode·职场和发展·贪心算法·动态规划
散1124 天前
01数据结构-初探动态规划
数据结构·动态规划
cwplh4 天前
MX模拟赛总结
算法·动态规划
睡不醒的kun5 天前
leetcode算法刷题的第三十二天
数据结构·c++·算法·leetcode·职场和发展·贪心算法·动态规划
共享家95275 天前
经典动态规划题解
算法·leetcode·动态规划
二哈不在线5 天前
代码随想录二刷之“动态规划”~GO
算法·golang·动态规划
楼田莉子5 天前
C++动态规划算法:斐波那契数列模型
c++·学习·算法·动态规划
ulias2126 天前
单元最短路问题
数据库·c++·算法·动态规划
孤廖7 天前
从 “模板” 到 “场景”,用 C++ 磨透拓扑排序的实战逻辑
开发语言·c++·程序人生·算法·贪心算法·动态规划·学习方法
其古寺7 天前
贪心算法与动态规划:数学原理、实现与优化
算法·贪心算法·动态规划