【深度学习】分类问题代码实战之初始手写数据集

手写数据集分类问题通常是指通过机器学习模型对手写数字进行分类。最著名的手写数字数据集是 MNIST(Modified National Institute of Standards and Technology) 数据集,它包含了大量的手写数字图像,广泛用于图像分类和机器学习的研究与教学。在手写数据集分类问题中,目标是将手写数字图像(通常是 28x28 像素的灰度图像)映射到对应的数字标签(0 到 9)。例如,如果输入的图像是数字"3",模型的目标就是预测该图像是数字"3"。

utils.py

python 复制代码
import torch
from matplotlib import pyplot as plt
def plot_curve(data):
    fig = plt.figure()
    plt.plot(range(len(data), data, color='blue'))
    plt.legend(['value'],loc='upper right')
    plt.xlabel('step')
    plt.ylabel('value')
    plt.show()

def plot_image(img, label, name):
    fig = plt.figure()
    for i in range(6):
        plt.subplot(2, 3, i + 1)
        plt.tight_layout()
        plt.imshow(img[i][0] * 0.3081 + 0.1307, cmap='gray', interpolation = 'none')
        plt.title("{}:{}".format(name, label[i].item()))
        plt.xticks([])
        plt.yticks([])
    plt.show()

def one_hot(label, depth=10):
    out = torch.zeros(label.size(0), depth)
    idx = torch.LongTensor(label).view(-1, 1)
    out.scatter_(dim = 1, index = idx, value = 1)
    return out

mnist_train.py:

python 复制代码
# 导入问题所需要的关键包
import torch
from torch import nn
from torch.nn import functional as F
from torch import optim
import torchvision
from matplotlib import pyplot as plt
from utils import plot_image, plot_curve, one_hot

# step 1.load dataset加载数据集
train_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST('mnist data', train=True, download=True, transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.1307,),(0.3081,))])), batch_size=batch_size, shuffle=True)

test_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST('mnist data/', train=False, download=True, transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.1307,),(0.3081,))])), batch_size=batch_size, shuffle=False)

x, y = next(iter(train_loader))
print(x.shape, y.shape, x.min(), x.max())
plot_image(x, y, 'image sample')

# 构建网络模型
class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        
        self.fc1 = nn.Linear(28 * 28, 256)
        self.fc2 = nn.Linear(256, 64)
        self.fc3 = nn.Linear(64, 10)

     def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
       
        return x

# 进行网络的初始化
net = Net()
# 定义优化器
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
# 初始化数组存储loss数值便于绘图
train_loss =[] 

# 对数据集迭代
for epoch in range(3):
    # 对batch迭代
    for batch_idx, (x, y) in enumerate(train_loader):
        # x:[b,1,28,28],y:[512]
        # [b, 784]
        x = x.view(x.size(0), 28*28)
        # [b, 10]
        out = net(x)
        y_onehot = one_hot(y)
        # loss=mse(out, y_onehot) 计算loss数值
        loss = F.mse_loss(out, y_onehot)
        # 将梯度置零操作
        optimizer.zero_grad()
        # 反向传播
        loss.backward()
        # 更新权重值
        optimizer.step()
        # 累加loss值
        train_loss.append(loss.item())
        # 每十个batch进行loss值打印
        if batch_idx % 10 ==0:
            print(epoch, batch_idx, loss.item())

# 绘制loss曲线
plot_curve(train_loss)

# 进行测试
total_correct = 0
for x, y in test_loader:
    x = x.view(x.size(0), 28*28)
    out = net(x)
    # out[b, 10], pred[b]
    pred = out.argmax(dim=1)
    correct = pred.eq(y).sum().float()
    totol_correct += correct

total_num = len(test_loader.dataset)
acc = total_correct / total_num
print('test acc:', acc)

# 进行样例打印
x, y = next(iter(test_loader))
out = net(x.view(x.size(0), 28*28))
pred = out.argmax(dim=1)
plot_image(x, pred, 'test')
相关推荐
茕离37 分钟前
b站——《【强化学习】一小时完全入门》学习笔记及代码(1-3 多臂老虎机)
人工智能·笔记·学习
pchmi1 小时前
C# OpenCV机器视觉:SoftNMS非极大值抑制
人工智能·opencv·c#·机器视觉·opencvsharp
子午1 小时前
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
人工智能·python·深度学习
Jack_hrx1 小时前
DeepSeek 深度解析:引领 SEO 与数据分析新时代的智能工具
人工智能·数据挖掘·数据分析·seo·deepseek
2的n次方_1 小时前
快速部署 DeepSeek R1 模型
人工智能·自然语言处理·deepseek
徐行tag1 小时前
三角测量——用相机运动估计特征点的空间位置
人工智能·数码相机·视觉slam
qq_273900234 小时前
AF3 superimpose函数解读
人工智能·深度学习·机器学习·生物信息学
Dragon水魅5 小时前
Ubuntu22.04 配置deepseek知识库
linux·服务器·深度学习·ubuntu
xwz小王子7 小时前
Nature Machine Intelligence 提出了LEGION的机器人终身强化学习框架
人工智能·机器人
老大白菜8 小时前
使用 DeepSeek 进行图像描述:多模态 AI 技术实践
人工智能