【深度学习】分类问题代码实战之初始手写数据集

手写数据集分类问题通常是指通过机器学习模型对手写数字进行分类。最著名的手写数字数据集是 MNIST(Modified National Institute of Standards and Technology) 数据集,它包含了大量的手写数字图像,广泛用于图像分类和机器学习的研究与教学。在手写数据集分类问题中,目标是将手写数字图像(通常是 28x28 像素的灰度图像)映射到对应的数字标签(0 到 9)。例如,如果输入的图像是数字"3",模型的目标就是预测该图像是数字"3"。

utils.py

python 复制代码
import torch
from matplotlib import pyplot as plt
def plot_curve(data):
    fig = plt.figure()
    plt.plot(range(len(data), data, color='blue'))
    plt.legend(['value'],loc='upper right')
    plt.xlabel('step')
    plt.ylabel('value')
    plt.show()

def plot_image(img, label, name):
    fig = plt.figure()
    for i in range(6):
        plt.subplot(2, 3, i + 1)
        plt.tight_layout()
        plt.imshow(img[i][0] * 0.3081 + 0.1307, cmap='gray', interpolation = 'none')
        plt.title("{}:{}".format(name, label[i].item()))
        plt.xticks([])
        plt.yticks([])
    plt.show()

def one_hot(label, depth=10):
    out = torch.zeros(label.size(0), depth)
    idx = torch.LongTensor(label).view(-1, 1)
    out.scatter_(dim = 1, index = idx, value = 1)
    return out

mnist_train.py:

python 复制代码
# 导入问题所需要的关键包
import torch
from torch import nn
from torch.nn import functional as F
from torch import optim
import torchvision
from matplotlib import pyplot as plt
from utils import plot_image, plot_curve, one_hot

# step 1.load dataset加载数据集
train_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST('mnist data', train=True, download=True, transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.1307,),(0.3081,))])), batch_size=batch_size, shuffle=True)

test_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST('mnist data/', train=False, download=True, transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.1307,),(0.3081,))])), batch_size=batch_size, shuffle=False)

x, y = next(iter(train_loader))
print(x.shape, y.shape, x.min(), x.max())
plot_image(x, y, 'image sample')

# 构建网络模型
class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        
        self.fc1 = nn.Linear(28 * 28, 256)
        self.fc2 = nn.Linear(256, 64)
        self.fc3 = nn.Linear(64, 10)

     def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
       
        return x

# 进行网络的初始化
net = Net()
# 定义优化器
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
# 初始化数组存储loss数值便于绘图
train_loss =[] 

# 对数据集迭代
for epoch in range(3):
    # 对batch迭代
    for batch_idx, (x, y) in enumerate(train_loader):
        # x:[b,1,28,28],y:[512]
        # [b, 784]
        x = x.view(x.size(0), 28*28)
        # [b, 10]
        out = net(x)
        y_onehot = one_hot(y)
        # loss=mse(out, y_onehot) 计算loss数值
        loss = F.mse_loss(out, y_onehot)
        # 将梯度置零操作
        optimizer.zero_grad()
        # 反向传播
        loss.backward()
        # 更新权重值
        optimizer.step()
        # 累加loss值
        train_loss.append(loss.item())
        # 每十个batch进行loss值打印
        if batch_idx % 10 ==0:
            print(epoch, batch_idx, loss.item())

# 绘制loss曲线
plot_curve(train_loss)

# 进行测试
total_correct = 0
for x, y in test_loader:
    x = x.view(x.size(0), 28*28)
    out = net(x)
    # out[b, 10], pred[b]
    pred = out.argmax(dim=1)
    correct = pred.eq(y).sum().float()
    totol_correct += correct

total_num = len(test_loader.dataset)
acc = total_correct / total_num
print('test acc:', acc)

# 进行样例打印
x, y = next(iter(test_loader))
out = net(x.view(x.size(0), 28*28))
pred = out.argmax(dim=1)
plot_image(x, pred, 'test')
相关推荐
白-胖-子4 小时前
深入剖析大模型在文本生成式 AI 产品架构中的核心地位
人工智能·架构
想要成为计算机高手5 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
静心问道6 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.07 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
小楓12017 小时前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業
数据与人工智能律师7 小时前
数字迷雾中的安全锚点:解码匿名化与假名化的法律边界与商业价值
大数据·网络·人工智能·云计算·区块链
chenchihwen7 小时前
大模型应用班-第2课 DeepSeek使用与提示词工程课程重点 学习ollama 安装 用deepseek-r1:1.5b 分析PDF 内容
人工智能·学习
说私域7 小时前
公域流量向私域流量转化策略研究——基于开源AI智能客服、AI智能名片与S2B2C商城小程序的融合应用
人工智能·小程序
Java樱木8 小时前
AI 编程工具 Trae 重要的升级。。。
人工智能
码字的字节8 小时前
深度学习损失函数的设计哲学:从交叉熵到Huber损失的深入探索
深度学习·交叉熵·huber