12.04 深度学习-用CNN做图像分类+训练可视化

数据集要找对应功能的数据集 分类找分类 目标检测用目标检测的

使用labelimg 标注工具 要先pip 然后进行标注和保存 图片和 lables 应该在同一个文件夹里面 lables文件是一个txt 记录了分类 中心店坐标 高度宽度 都是归一化的 横坐标/图像宽度

使用labelme 进行图像分割的标注 生成一个json文件 里面有分割的点坐标没有标准化的 和路径等信息

分类 目标检测labelimg 目标分割labelme 不一

import torch

import os

import wandb

from torch import nn

from torch import optim

from torch.utils.data import DataLoader,TensorDataset

from torch.utils.tensorboard import SummaryWriter

from torchvision import transforms

from torchvision.utils import make_grid

from torchvision.models import vgg16

from torchvision.datasets import MNIST,ImageFolder # 训练集和验证集分开下 通过train 设置下载哪一个 并且用transforms.conpose 组合转换器可以有标准化 转tensor

current_path=os.path.dirname(file)

data_path=os.path.join(current_path,"datasets")

rel_path=os.path.relpath(data_path)

print(rel_path)

定义神经网络 卷积 池化 全连接

def demo1():

wandb.init(

# set the wandb project where this run will be logged

project="CNN做图像分类测试", # 工程名

# track hyperparameters and run metadata

config={

"learning_rate": 0.01, # 模型的学习率

"architecture": "CNN", # 模型是CNN

"dataset": "MNIST", # 数据集名称

"epochs": 5,# 轮次

}

)

writer=SummaryWriter()

class MyNet(nn.Module):

def init(self, *args, **kwargs):

super().init(*args, **kwargs)

这里是可以看别人网路的图来指定网络 s代表池化 c代表卷积 layer代表线性

self.hidden1=nn.Sequential(nn.Conv2d(1,6,kernel_size=5),nn.ReLU())

self.hidden2=nn.Sequential(nn.MaxPool2d(kernel_size=2,stride=2))

self.hidden3=nn.Sequential(nn.Conv2d(6,16,kernel_size=5),nn.ReLU())

线性层要拉平算

self.hidden4=nn.Sequential(nn.Linear(16*5*5,120),nn.ReLU())

self.hidden5=nn.Sequential(nn.Linear(120,84),nn.ReLU())

self.out=nn.Sequential(nn.Linear(84,10),nn.Softmax(dim=1))

def forward(self,x):

x=self.hidden1(x)

x=self.hidden2(x)

x=self.hidden3(x)

x=self.hidden2(x)

x=x.view(x.shape[0],-1)

x=self.hidden4(x)

x=self.hidden5(x)

return self.out(x)

定义一个转化器

transforms1=transforms.Compose([transforms.ToTensor(),transforms.Resize((32,32))]) # transforms.Compose()方法为transforms组合转化器 里面传入一个列表 列表里面的元素是 transforms的转化器

数据的获取

data_train=MNIST(root=rel_path,train=True,transform=transforms1)

data_train分批次

dataLoader1=DataLoader(data_train,batch_size=64,shuffle=True)

循环轮次

epochs=50

实例化模型

net1=MyNet()

优化器

optim1=optim.Adam(net1.parameters(),lr=0.01)

损失函数

loss_func=nn.CrossEntropyLoss()

开始训练

for i in range(epochs):

for x_train,y_train in dataLoader1:

前向传播

y_pre=net1(x_train)

损失

loss=loss_func(y_pre,y_train)

清空梯度

optim1.zero_grad()

反向

loss.backward()

梯度更新

optim1.step()

writer.add_scalar("loss", loss)

for x in x_train:

writer.add_image(tag="epoch:{i}",img_tensor=x)

img_grid = make_grid(x)

if i>3:

writer.add_image(f"r_m_{i}_", x,global_step=1)

writer.add_graph(net1,torch.rand(1,1,32,32))

writer.close()

wandb.log({"loss": loss}) # 登记

wandb.watch(net1, log="all", log_graph=True)

wandb.finish()

def demo2():

使用自己其他地方下载的分类数据集 这个文件夹要满足一个结构 文件名

data_train=ImageFolder()# 传入路径根路径 transform is是否是验证集

使用经典的模型 在torchvision.datasets 的model里面

vgg=vgg16()

pass

if name=="main":

demo1()

pass

相关推荐
灏瀚星空10 分钟前
AI 模型高效化:推理加速与训练优化的技术原理与理论解析
开发语言·人工智能·深度学习·程序人生·机器人·智慧城市·量子计算
七灵微42 分钟前
PyTorch进阶学习笔记[长期更新]
pytorch·深度学习·学习
有Li44 分钟前
基于深度学习并利用时间信息在X射线血管造影中进行冠状动脉血管分割|文献速递-深度学习医疗AI最新文献
人工智能·深度学习
Code_流苏1 小时前
杰弗里·辛顿:深度学习教父
人工智能·深度学习·神经网络·反向传播算法·杰弗里·辛顿
wufeil3 小时前
基于电子等排体的3D分子生成模型 ShEPhERD - 评测
深度学习·扩散模型·分子生成·药物设计·aidd·药效团·静电势
中意灬8 小时前
基于CNN+ViT的蔬果图像分类实验
人工智能·分类·cnn
有杨既安然10 小时前
Python自动化办公
开发语言·人工智能·深度学习·机器学习
weixin_4487816212 小时前
第T8周:猫狗识别
深度学习·神经网络·tensorflow
巷95514 小时前
深入理解卷积神经网络(CNN):从原理到实践
人工智能·神经网络·cnn