12.04 深度学习-用CNN做图像分类+训练可视化

数据集要找对应功能的数据集 分类找分类 目标检测用目标检测的

使用labelimg 标注工具 要先pip 然后进行标注和保存 图片和 lables 应该在同一个文件夹里面 lables文件是一个txt 记录了分类 中心店坐标 高度宽度 都是归一化的 横坐标/图像宽度

使用labelme 进行图像分割的标注 生成一个json文件 里面有分割的点坐标没有标准化的 和路径等信息

分类 目标检测labelimg 目标分割labelme 不一

import torch

import os

import wandb

from torch import nn

from torch import optim

from torch.utils.data import DataLoader,TensorDataset

from torch.utils.tensorboard import SummaryWriter

from torchvision import transforms

from torchvision.utils import make_grid

from torchvision.models import vgg16

from torchvision.datasets import MNIST,ImageFolder # 训练集和验证集分开下 通过train 设置下载哪一个 并且用transforms.conpose 组合转换器可以有标准化 转tensor

current_path=os.path.dirname(file)

data_path=os.path.join(current_path,"datasets")

rel_path=os.path.relpath(data_path)

print(rel_path)

定义神经网络 卷积 池化 全连接

def demo1():

wandb.init(

# set the wandb project where this run will be logged

project="CNN做图像分类测试", # 工程名

# track hyperparameters and run metadata

config={

"learning_rate": 0.01, # 模型的学习率

"architecture": "CNN", # 模型是CNN

"dataset": "MNIST", # 数据集名称

"epochs": 5,# 轮次

}

)

writer=SummaryWriter()

class MyNet(nn.Module):

def init(self, *args, **kwargs):

super().init(*args, **kwargs)

这里是可以看别人网路的图来指定网络 s代表池化 c代表卷积 layer代表线性

self.hidden1=nn.Sequential(nn.Conv2d(1,6,kernel_size=5),nn.ReLU())

self.hidden2=nn.Sequential(nn.MaxPool2d(kernel_size=2,stride=2))

self.hidden3=nn.Sequential(nn.Conv2d(6,16,kernel_size=5),nn.ReLU())

线性层要拉平算

self.hidden4=nn.Sequential(nn.Linear(16*5*5,120),nn.ReLU())

self.hidden5=nn.Sequential(nn.Linear(120,84),nn.ReLU())

self.out=nn.Sequential(nn.Linear(84,10),nn.Softmax(dim=1))

def forward(self,x):

x=self.hidden1(x)

x=self.hidden2(x)

x=self.hidden3(x)

x=self.hidden2(x)

x=x.view(x.shape[0],-1)

x=self.hidden4(x)

x=self.hidden5(x)

return self.out(x)

定义一个转化器

transforms1=transforms.Compose([transforms.ToTensor(),transforms.Resize((32,32))]) # transforms.Compose()方法为transforms组合转化器 里面传入一个列表 列表里面的元素是 transforms的转化器

数据的获取

data_train=MNIST(root=rel_path,train=True,transform=transforms1)

data_train分批次

dataLoader1=DataLoader(data_train,batch_size=64,shuffle=True)

循环轮次

epochs=50

实例化模型

net1=MyNet()

优化器

optim1=optim.Adam(net1.parameters(),lr=0.01)

损失函数

loss_func=nn.CrossEntropyLoss()

开始训练

for i in range(epochs):

for x_train,y_train in dataLoader1:

前向传播

y_pre=net1(x_train)

损失

loss=loss_func(y_pre,y_train)

清空梯度

optim1.zero_grad()

反向

loss.backward()

梯度更新

optim1.step()

writer.add_scalar("loss", loss)

for x in x_train:

writer.add_image(tag="epoch:{i}",img_tensor=x)

img_grid = make_grid(x)

if i>3:

writer.add_image(f"r_m_{i}_", x,global_step=1)

writer.add_graph(net1,torch.rand(1,1,32,32))

writer.close()

wandb.log({"loss": loss}) # 登记

wandb.watch(net1, log="all", log_graph=True)

wandb.finish()

def demo2():

使用自己其他地方下载的分类数据集 这个文件夹要满足一个结构 文件名

data_train=ImageFolder()# 传入路径根路径 transform is是否是验证集

使用经典的模型 在torchvision.datasets 的model里面

vgg=vgg16()

pass

if name=="main":

demo1()

pass

相关推荐
진영_4 小时前
Transformer(一)---背景介绍及架构介绍
人工智能·深度学习·transformer
星楠_0014 小时前
logits和softmax分布
人工智能·python·深度学习
AI数据皮皮侠10 小时前
中国各省森林覆盖率等数据(2000-2023年)
大数据·人工智能·python·深度学习·机器学习
a man of sadness16 小时前
决策树算法基础:信息熵相关知识
决策树·机器学习·分类·信息熵·kl散度·交叉熵
蒋星熠16 小时前
TensorFlow与PyTorch深度对比分析:从基础原理到实战选择的完整指南
人工智能·pytorch·python·深度学习·ai·tensorflow·neo4j
老坛程序员17 小时前
开源项目Sherpa-onnx:全平台离线语音识别的轻量级高性能引擎
人工智能·深度学习·机器学习·语音识别
西西弗Sisyphus18 小时前
YOLO 11 图像分类推理 Web 服务
yolo·分类·yolo 11
无风听海18 小时前
神经网络之Softmax激活函数求导过程
人工智能·深度学习·神经网络
、、、、南山小雨、、、、19 小时前
Pytorch强化学习demo
pytorch·深度学习·机器学习·强化学习
云澈ovo20 小时前
稀疏化神经网络:降低AI推理延迟的量化压缩技术
人工智能·深度学习·神经网络