12.04 深度学习-用CNN做图像分类+训练可视化

数据集要找对应功能的数据集 分类找分类 目标检测用目标检测的

使用labelimg 标注工具 要先pip 然后进行标注和保存 图片和 lables 应该在同一个文件夹里面 lables文件是一个txt 记录了分类 中心店坐标 高度宽度 都是归一化的 横坐标/图像宽度

使用labelme 进行图像分割的标注 生成一个json文件 里面有分割的点坐标没有标准化的 和路径等信息

分类 目标检测labelimg 目标分割labelme 不一

import torch

import os

import wandb

from torch import nn

from torch import optim

from torch.utils.data import DataLoader,TensorDataset

from torch.utils.tensorboard import SummaryWriter

from torchvision import transforms

from torchvision.utils import make_grid

from torchvision.models import vgg16

from torchvision.datasets import MNIST,ImageFolder # 训练集和验证集分开下 通过train 设置下载哪一个 并且用transforms.conpose 组合转换器可以有标准化 转tensor

current_path=os.path.dirname(file)

data_path=os.path.join(current_path,"datasets")

rel_path=os.path.relpath(data_path)

print(rel_path)

定义神经网络 卷积 池化 全连接

def demo1():

wandb.init(

# set the wandb project where this run will be logged

project="CNN做图像分类测试", # 工程名

# track hyperparameters and run metadata

config={

"learning_rate": 0.01, # 模型的学习率

"architecture": "CNN", # 模型是CNN

"dataset": "MNIST", # 数据集名称

"epochs": 5,# 轮次

}

)

writer=SummaryWriter()

class MyNet(nn.Module):

def init(self, *args, **kwargs):

super().init(*args, **kwargs)

这里是可以看别人网路的图来指定网络 s代表池化 c代表卷积 layer代表线性

self.hidden1=nn.Sequential(nn.Conv2d(1,6,kernel_size=5),nn.ReLU())

self.hidden2=nn.Sequential(nn.MaxPool2d(kernel_size=2,stride=2))

self.hidden3=nn.Sequential(nn.Conv2d(6,16,kernel_size=5),nn.ReLU())

线性层要拉平算

self.hidden4=nn.Sequential(nn.Linear(16*5*5,120),nn.ReLU())

self.hidden5=nn.Sequential(nn.Linear(120,84),nn.ReLU())

self.out=nn.Sequential(nn.Linear(84,10),nn.Softmax(dim=1))

def forward(self,x):

x=self.hidden1(x)

x=self.hidden2(x)

x=self.hidden3(x)

x=self.hidden2(x)

x=x.view(x.shape[0],-1)

x=self.hidden4(x)

x=self.hidden5(x)

return self.out(x)

定义一个转化器

transforms1=transforms.Compose([transforms.ToTensor(),transforms.Resize((32,32))]) # transforms.Compose()方法为transforms组合转化器 里面传入一个列表 列表里面的元素是 transforms的转化器

数据的获取

data_train=MNIST(root=rel_path,train=True,transform=transforms1)

data_train分批次

dataLoader1=DataLoader(data_train,batch_size=64,shuffle=True)

循环轮次

epochs=50

实例化模型

net1=MyNet()

优化器

optim1=optim.Adam(net1.parameters(),lr=0.01)

损失函数

loss_func=nn.CrossEntropyLoss()

开始训练

for i in range(epochs):

for x_train,y_train in dataLoader1:

前向传播

y_pre=net1(x_train)

损失

loss=loss_func(y_pre,y_train)

清空梯度

optim1.zero_grad()

反向

loss.backward()

梯度更新

optim1.step()

writer.add_scalar("loss", loss)

for x in x_train:

writer.add_image(tag="epoch:{i}",img_tensor=x)

img_grid = make_grid(x)

if i>3:

writer.add_image(f"r_m_{i}_", x,global_step=1)

writer.add_graph(net1,torch.rand(1,1,32,32))

writer.close()

wandb.log({"loss": loss}) # 登记

wandb.watch(net1, log="all", log_graph=True)

wandb.finish()

def demo2():

使用自己其他地方下载的分类数据集 这个文件夹要满足一个结构 文件名

data_train=ImageFolder()# 传入路径根路径 transform is是否是验证集

使用经典的模型 在torchvision.datasets 的model里面

vgg=vgg16()

pass

if name=="main":

demo1()

pass

相关推荐
月吟荧静1 小时前
04动手学深度学习(下)
人工智能·深度学习
笙囧同学1 小时前
从零到一:我是如何用深度学习打造高性能书籍推荐系统的
人工智能·深度学习
EulerBlind2 小时前
【运维】HuggingFace缓存目录结构详解
运维·深度学习
王上上4 小时前
【论文阅读53】-CNN-LSTM-滑坡风险随时间变化研究
论文阅读·cnn·lstm
Blossom.1186 小时前
基于深度学习的图像分类:使用ShuffleNet实现高效分类
人工智能·python·深度学习·目标检测·机器学习·分类·数据挖掘
徐礼昭|商派软件市场负责人6 小时前
数智驱动的「库存管理」:从风险系数、ABC分类到OMS和ERP系统的协同优化策略
大数据·人工智能·分类
pk_xz1234566 小时前
社区资源媒体管理系统设计与实现
网络·python·深度学习·算法·数据挖掘·媒体
Guheyunyi6 小时前
安全风险监测系统是什么?内容有哪些?
大数据·人工智能·深度学习·安全·信息可视化
TiAmo zhang8 小时前
深度学习与图像处理 | 基于PaddlePaddle的梯度下降算法实现(线性回归投资预测)
图像处理·深度学习·算法
笔触狂放9 小时前
【机器学习】第八章 模型评估及改进
人工智能·深度学习·机器学习