机器学习微生物组学

Nature与Science重磅!AI与生物医药迎来百年来最重磅进展!https://mp.weixin.qq.com/s/Vw3Jm4vVKP14_UH2jqwsxA

第一天

机器学习及微生物学简介

1.机器学习基本概念介绍

  1. 常用机器学习模型介绍(GLM,BF,SVM,lasso,KNN等等)

  2. 混淆矩阵

  3. ROC曲线

  4. 主成分分析(PCA)

  5. 微生物学基本概念

  6. 微生物学常用分析介绍

R语言简介及实操

1.R语言概述

2.R软件及R包安装

3.R语言语法及数据类型

4.条件语句

5.循环

第二天

机器学习在微生物学中的应用案例分享

1.利用机器学习基于微生物组学数据预测宿主表

2.利用机器学习基于微生物组学数据预测疾病状态

3.利用机器学习预测微生物风险

4.机器学习研究饮食对肠道微生物的影响

微生物学常用分析(实操)

  1. 微生物丰度分析

  2. α-diversity,β-diversity分析

  3. 进化树构建

  4. 降维分析

  5. 基于OTU的差异表达分析,热图,箱型图绘制微生物biomarker鉴定

第三天:(实操)

零代码工具利用机器学习分析微生物组学数据

  1. 加载数据及数据归一化

  2. 构建训练模型(GLM, RF, SVM)

  3. 模型参数优化

  4. 模型错误率曲线绘制

  5. 混淆矩阵计算

  6. 重要特征筛选

  7. 模型验证,ROC曲线绘制利用模型进行预测

第四天(实操)

利用机器学习基于微生物组学数据预测宿主表型(二分类变量以及连续变量)

  1. 加载数据(三套数据)

  2. 数据归一化

  3. OUT特征处理

  4. 机器学习模型构建(RF, KNN, SVM, Lasso等9种机器学习方法)

  5. 5倍交叉验证

  6. 绘制ROC 曲线,比较不同机器学习模型模型性能评估

第五天(实操)

利用机器学习预测微生物风险(多分类)

  1. 加载数据

  2. 机器学习模型构建(RF, gbm, SVM, LogitBoost等等)

  3. 10倍交叉验证

  4. 模型性能评估

利用机器学习预测刺激前后肠道菌群变化

  1. 数据加载及预处理

  2. α-diversity,β-diversity分析

  3. RF模型构建(比较分别基于OUT,KO,phylum的模型效果)

  4. 10倍交叉验证, 留一法验证

  5. 特征筛选及重要特征可视化外部数据测试模型

Nature与Science重磅!AI与生物医药迎来百年来最重磅进展!https://mp.weixin.qq.com/s/Vw3Jm4vVKP14_UH2jqwsxA

相关推荐
tilblackout4 分钟前
机器学习详解(28):LightGBM原理
人工智能·机器学习
云卓SKYDROID14 分钟前
无人机气动设计模块解析
人工智能·计算机视觉·目标跟踪·无人机·高科技
数据皮皮侠19 分钟前
中国汽车能源消耗量(2010-2024年)
大数据·数据库·人工智能·物联网·金融·汽车·能源
weixin_4640780720 分钟前
机器学习sklearn:决策树的参数、属性、接口
决策树·机器学习·sklearn
love530love40 分钟前
Windows 11 下 Anaconda 命令修复指南及常见问题解决
运维·ide·人工智能·windows·python·架构·conda
NeoFii41 分钟前
Day 24:元组与os模块
python·机器学习
东风中的蒟蒻1 小时前
MOE 速览
人工智能·language model
SimonKing1 小时前
一文搞定:SpringBoot集成语音识别模型FunASR
java·人工智能·后端
聚客AI1 小时前
📚企业AI架构革命:MCP协议如何打通数据孤岛?
人工智能·llm·mcp
易知微EasyV数据可视化1 小时前
3D高斯泼溅技术:数字孪生的新一代数据引擎
人工智能·3d·数字孪生·建模·3d高斯泼溅技术