机器学习微生物组学

Nature与Science重磅!AI与生物医药迎来百年来最重磅进展!https://mp.weixin.qq.com/s/Vw3Jm4vVKP14_UH2jqwsxA

第一天

机器学习及微生物学简介

1.机器学习基本概念介绍

  1. 常用机器学习模型介绍(GLM,BF,SVM,lasso,KNN等等)

  2. 混淆矩阵

  3. ROC曲线

  4. 主成分分析(PCA)

  5. 微生物学基本概念

  6. 微生物学常用分析介绍

R语言简介及实操

1.R语言概述

2.R软件及R包安装

3.R语言语法及数据类型

4.条件语句

5.循环

第二天

机器学习在微生物学中的应用案例分享

1.利用机器学习基于微生物组学数据预测宿主表

2.利用机器学习基于微生物组学数据预测疾病状态

3.利用机器学习预测微生物风险

4.机器学习研究饮食对肠道微生物的影响

微生物学常用分析(实操)

  1. 微生物丰度分析

  2. α-diversity,β-diversity分析

  3. 进化树构建

  4. 降维分析

  5. 基于OTU的差异表达分析,热图,箱型图绘制微生物biomarker鉴定

第三天:(实操)

零代码工具利用机器学习分析微生物组学数据

  1. 加载数据及数据归一化

  2. 构建训练模型(GLM, RF, SVM)

  3. 模型参数优化

  4. 模型错误率曲线绘制

  5. 混淆矩阵计算

  6. 重要特征筛选

  7. 模型验证,ROC曲线绘制利用模型进行预测

第四天(实操)

利用机器学习基于微生物组学数据预测宿主表型(二分类变量以及连续变量)

  1. 加载数据(三套数据)

  2. 数据归一化

  3. OUT特征处理

  4. 机器学习模型构建(RF, KNN, SVM, Lasso等9种机器学习方法)

  5. 5倍交叉验证

  6. 绘制ROC 曲线,比较不同机器学习模型模型性能评估

第五天(实操)

利用机器学习预测微生物风险(多分类)

  1. 加载数据

  2. 机器学习模型构建(RF, gbm, SVM, LogitBoost等等)

  3. 10倍交叉验证

  4. 模型性能评估

利用机器学习预测刺激前后肠道菌群变化

  1. 数据加载及预处理

  2. α-diversity,β-diversity分析

  3. RF模型构建(比较分别基于OUT,KO,phylum的模型效果)

  4. 10倍交叉验证, 留一法验证

  5. 特征筛选及重要特征可视化外部数据测试模型

Nature与Science重磅!AI与生物医药迎来百年来最重磅进展!https://mp.weixin.qq.com/s/Vw3Jm4vVKP14_UH2jqwsxA

相关推荐
飞哥数智坊几秒前
等了这么久,企业微信的AI终于来了!
人工智能
Christo32 分钟前
SIGKDD-2023《Complementary Classifier Induced Partial Label Learning》
人工智能·深度学习·机器学习
AIGC安琪14 分钟前
Transformer中的编码器和解码器是什么?
人工智能·深度学习·ai·语言模型·大模型·transformer·ai大模型
算家计算25 分钟前
3秒搞定产品换装换背景!【ComfyUI-万物迁移工作流】本地部署教程:基于FLUX.1 Kontext上下文感知图像编辑
人工智能
山烛34 分钟前
OpenCV 图像处理基础操作指南(二)
人工智能·python·opencv·计算机视觉
聚客AI1 小时前
🧩万亿级Token训练!解密大模型预训练算力黑洞与RLHF对齐革命
人工智能·llm·强化学习
爱疯生活1 小时前
车e估牵头正式启动乘用车金融价值评估师编制
大数据·人工智能·金融
JXL18601 小时前
机器学习概念(面试题库)
人工智能·机器学习
星期天要睡觉1 小时前
机器学习深度学习 所需数据的清洗实战案例 (结构清晰、万字解析、完整代码)包括机器学习方法预测缺失值的实践
人工智能·深度学习·机器学习·数据挖掘
点云SLAM2 小时前
Eigen中Dense 模块简要介绍和实战应用示例(最小二乘拟合直线、协方差矩阵计算和稀疏求解等)
线性代数·算法·机器学习·矩阵·机器人/slam·密集矩阵与向量·eigen库