机器学习微生物组学

Nature与Science重磅!AI与生物医药迎来百年来最重磅进展!https://mp.weixin.qq.com/s/Vw3Jm4vVKP14_UH2jqwsxA

第一天

机器学习及微生物学简介

1.机器学习基本概念介绍

  1. 常用机器学习模型介绍(GLM,BF,SVM,lasso,KNN等等)

  2. 混淆矩阵

  3. ROC曲线

  4. 主成分分析(PCA)

  5. 微生物学基本概念

  6. 微生物学常用分析介绍

R语言简介及实操

1.R语言概述

2.R软件及R包安装

3.R语言语法及数据类型

4.条件语句

5.循环

第二天

机器学习在微生物学中的应用案例分享

1.利用机器学习基于微生物组学数据预测宿主表

2.利用机器学习基于微生物组学数据预测疾病状态

3.利用机器学习预测微生物风险

4.机器学习研究饮食对肠道微生物的影响

微生物学常用分析(实操)

  1. 微生物丰度分析

  2. α-diversity,β-diversity分析

  3. 进化树构建

  4. 降维分析

  5. 基于OTU的差异表达分析,热图,箱型图绘制微生物biomarker鉴定

第三天:(实操)

零代码工具利用机器学习分析微生物组学数据

  1. 加载数据及数据归一化

  2. 构建训练模型(GLM, RF, SVM)

  3. 模型参数优化

  4. 模型错误率曲线绘制

  5. 混淆矩阵计算

  6. 重要特征筛选

  7. 模型验证,ROC曲线绘制利用模型进行预测

第四天(实操)

利用机器学习基于微生物组学数据预测宿主表型(二分类变量以及连续变量)

  1. 加载数据(三套数据)

  2. 数据归一化

  3. OUT特征处理

  4. 机器学习模型构建(RF, KNN, SVM, Lasso等9种机器学习方法)

  5. 5倍交叉验证

  6. 绘制ROC 曲线,比较不同机器学习模型模型性能评估

第五天(实操)

利用机器学习预测微生物风险(多分类)

  1. 加载数据

  2. 机器学习模型构建(RF, gbm, SVM, LogitBoost等等)

  3. 10倍交叉验证

  4. 模型性能评估

利用机器学习预测刺激前后肠道菌群变化

  1. 数据加载及预处理

  2. α-diversity,β-diversity分析

  3. RF模型构建(比较分别基于OUT,KO,phylum的模型效果)

  4. 10倍交叉验证, 留一法验证

  5. 特征筛选及重要特征可视化外部数据测试模型

Nature与Science重磅!AI与生物医药迎来百年来最重磅进展!https://mp.weixin.qq.com/s/Vw3Jm4vVKP14_UH2jqwsxA

相关推荐
路溪非溪4 分钟前
AI系列:智能音箱技术简析
人工智能·智能音箱
追逐☞10 分钟前
机器学习(13)——LGBM(2)
人工智能·机器学习
白熊18817 分钟前
【计算机视觉】论文精读《基于改进YOLOv3的火灾检测与识别》
人工智能·yolo·计算机视觉
鸢想睡觉25 分钟前
【OpenCV基础 1】几何变换、形态学处理、阈值分割、区域提取和脱敏处理
图像处理·人工智能
有Li34 分钟前
联合建模组织学和分子标记用于癌症分类|文献速递-深度学习医疗AI最新文献
人工智能·深度学习·分类
乌旭1 小时前
开源GPU架构RISC-V VCIX的深度学习潜力测试:从RTL仿真到MNIST实战
人工智能·深度学习·stable diffusion·架构·aigc·midjourney·risc-v
qq_416276421 小时前
SuperYOLO:多模态遥感图像中的超分辨率辅助目标检测之论文阅读
论文阅读·人工智能·目标检测
RuizhiHe1 小时前
从零开始实现大语言模型(十六):加载开源大语言模型参数
人工智能·chatgpt·llm·大语言模型·deepseek·从零开始实现大语言模型
asdfg12589631 小时前
深度估计中为什么需要已知相机基线(known camera baseline)?
人工智能·计算机视觉
LeeZhao@1 小时前
【AGI】大模型微调数据集准备
人工智能·数据挖掘·aigc·agi