机器学习微生物组学

Nature与Science重磅!AI与生物医药迎来百年来最重磅进展!https://mp.weixin.qq.com/s/Vw3Jm4vVKP14_UH2jqwsxA

第一天

机器学习及微生物学简介

1.机器学习基本概念介绍

  1. 常用机器学习模型介绍(GLM,BF,SVM,lasso,KNN等等)

  2. 混淆矩阵

  3. ROC曲线

  4. 主成分分析(PCA)

  5. 微生物学基本概念

  6. 微生物学常用分析介绍

R语言简介及实操

1.R语言概述

2.R软件及R包安装

3.R语言语法及数据类型

4.条件语句

5.循环

第二天

机器学习在微生物学中的应用案例分享

1.利用机器学习基于微生物组学数据预测宿主表

2.利用机器学习基于微生物组学数据预测疾病状态

3.利用机器学习预测微生物风险

4.机器学习研究饮食对肠道微生物的影响

微生物学常用分析(实操)

  1. 微生物丰度分析

  2. α-diversity,β-diversity分析

  3. 进化树构建

  4. 降维分析

  5. 基于OTU的差异表达分析,热图,箱型图绘制微生物biomarker鉴定

第三天:(实操)

零代码工具利用机器学习分析微生物组学数据

  1. 加载数据及数据归一化

  2. 构建训练模型(GLM, RF, SVM)

  3. 模型参数优化

  4. 模型错误率曲线绘制

  5. 混淆矩阵计算

  6. 重要特征筛选

  7. 模型验证,ROC曲线绘制利用模型进行预测

第四天(实操)

利用机器学习基于微生物组学数据预测宿主表型(二分类变量以及连续变量)

  1. 加载数据(三套数据)

  2. 数据归一化

  3. OUT特征处理

  4. 机器学习模型构建(RF, KNN, SVM, Lasso等9种机器学习方法)

  5. 5倍交叉验证

  6. 绘制ROC 曲线,比较不同机器学习模型模型性能评估

第五天(实操)

利用机器学习预测微生物风险(多分类)

  1. 加载数据

  2. 机器学习模型构建(RF, gbm, SVM, LogitBoost等等)

  3. 10倍交叉验证

  4. 模型性能评估

利用机器学习预测刺激前后肠道菌群变化

  1. 数据加载及预处理

  2. α-diversity,β-diversity分析

  3. RF模型构建(比较分别基于OUT,KO,phylum的模型效果)

  4. 10倍交叉验证, 留一法验证

  5. 特征筛选及重要特征可视化外部数据测试模型

Nature与Science重磅!AI与生物医药迎来百年来最重磅进展!https://mp.weixin.qq.com/s/Vw3Jm4vVKP14_UH2jqwsxA

相关推荐
飞哥数智坊6 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三6 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯7 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet9 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算9 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心9 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar10 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai10 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI11 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear12 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp