leetcode-42.接雨水

dp

使用动态规划的方法来解决"接雨水"问题也是一种有效的策略。动态规划的基本思想是预先计算出每个位置的左侧和右侧的最大高度,然后根据这些预计算的结果来确定每个位置可以存储的雨水量。

动态规划方法

算法步骤
  1. 初始化

    • 创建两个数组 leftMaxrightMax,用于存储每个位置左侧和右侧的最大高度。
    • 初始化 water 为 0,用于存储总的雨水量。
  2. 计算左侧最大高度

    • 从左到右遍历高度数组,填充 leftMax 数组。
    • 对于每个位置 ileftMax[i]height[0]height[i] 的最大值。
  3. 计算右侧最大高度

    • 从右到左遍历高度数组,填充 rightMax 数组。
    • 对于每个位置 irightMax[i]height[i]height[n-1] 的最大值。
  4. 计算雨水量

    • 遍历每个位置,计算当前位置能接的雨水量为 min(leftMax[i], rightMax[i]) - height[i]
    • 将每个位置的雨水量累加到 water
  5. 返回结果

    • 返回 water,即总的雨水量。
Java 实现
java 复制代码
class Solution {
    public int trap(int[] height) {
        int ans = 0;
        int len = height.length;
        int[] dpLeft = new int[len];
        int[] dpRight = new int[len];
        // init
        dpLeft[0] = height[0];
        dpRight[len - 1] = height[len - 1];
        // core
        for (int i = 1; i < len; i++) {
            dpLeft[i] = Math.max(dpLeft[i - 1], height[i]);
        }
        for (int i = len - 2; i >= 0; i--) {
            dpRight[i] = Math.max(dpRight[i + 1], height[i]);
        }
        for (int i = 0; i < len; i++) {
            ans += Math.min(dpLeft[i], dpRight[i]) - height[i];
        }
        return ans;
    }
}

代码说明

  • 左侧最大高度数组 leftMax:用于存储每个位置左侧的最大柱子高度。
  • 右侧最大高度数组 rightMax:用于存储每个位置右侧的最大柱子高度。
  • 雨水计算 :对于每个位置,雨水量是 min(leftMax[i], rightMax[i]) - height[i],即当前位置能存储的水量。

这种方法的时间复杂度为 O(n),空间复杂度为 O(n),因为需要额外的两个数组来存储左侧和右侧的最大高度。

相关推荐
今天背单词了吗9806 小时前
算法学习笔记:19.牛顿迭代法——从原理到实战,涵盖 LeetCode 与考研 408 例题
笔记·学习·算法·牛顿迭代法
jdlxx_dongfangxing7 小时前
进制转换算法详解及应用
算法
why技术8 小时前
也是出息了,业务代码里面也用上算法了。
java·后端·算法
2501_922895588 小时前
字符函数和字符串函数(下)- 暴力匹配算法
算法
IT信息技术学习圈9 小时前
算法核心知识复习:排序算法对比 + 递归与递推深度解析(根据GESP四级题目总结)
算法·排序算法
愚润求学9 小时前
【动态规划】01背包问题
c++·算法·leetcode·动态规划
会唱歌的小黄李9 小时前
【算法】贪心算法入门
算法·贪心算法
轻语呢喃10 小时前
每日LeetCode : 两数相加--链表操作与进位的经典处理
javascript·算法
钢铁男儿10 小时前
C# 接口(接口可以继承接口)
java·算法·c#
zl_vslam11 小时前
SLAM中的非线性优化-2D图优化之激光SLAM cartographer前端匹配(十七)
前端·人工智能·算法