leetcode-42.接雨水

dp

使用动态规划的方法来解决"接雨水"问题也是一种有效的策略。动态规划的基本思想是预先计算出每个位置的左侧和右侧的最大高度,然后根据这些预计算的结果来确定每个位置可以存储的雨水量。

动态规划方法

算法步骤
  1. 初始化

    • 创建两个数组 leftMaxrightMax,用于存储每个位置左侧和右侧的最大高度。
    • 初始化 water 为 0,用于存储总的雨水量。
  2. 计算左侧最大高度

    • 从左到右遍历高度数组,填充 leftMax 数组。
    • 对于每个位置 ileftMax[i]height[0]height[i] 的最大值。
  3. 计算右侧最大高度

    • 从右到左遍历高度数组,填充 rightMax 数组。
    • 对于每个位置 irightMax[i]height[i]height[n-1] 的最大值。
  4. 计算雨水量

    • 遍历每个位置,计算当前位置能接的雨水量为 min(leftMax[i], rightMax[i]) - height[i]
    • 将每个位置的雨水量累加到 water
  5. 返回结果

    • 返回 water,即总的雨水量。
Java 实现
java 复制代码
class Solution {
    public int trap(int[] height) {
        int ans = 0;
        int len = height.length;
        int[] dpLeft = new int[len];
        int[] dpRight = new int[len];
        // init
        dpLeft[0] = height[0];
        dpRight[len - 1] = height[len - 1];
        // core
        for (int i = 1; i < len; i++) {
            dpLeft[i] = Math.max(dpLeft[i - 1], height[i]);
        }
        for (int i = len - 2; i >= 0; i--) {
            dpRight[i] = Math.max(dpRight[i + 1], height[i]);
        }
        for (int i = 0; i < len; i++) {
            ans += Math.min(dpLeft[i], dpRight[i]) - height[i];
        }
        return ans;
    }
}

代码说明

  • 左侧最大高度数组 leftMax:用于存储每个位置左侧的最大柱子高度。
  • 右侧最大高度数组 rightMax:用于存储每个位置右侧的最大柱子高度。
  • 雨水计算 :对于每个位置,雨水量是 min(leftMax[i], rightMax[i]) - height[i],即当前位置能存储的水量。

这种方法的时间复杂度为 O(n),空间复杂度为 O(n),因为需要额外的两个数组来存储左侧和右侧的最大高度。

相关推荐
聚客AI3 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v5 小时前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工7 小时前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农9 小时前
【React用到的一些算法】游标和栈
算法·react.js
博笙困了9 小时前
AcWing学习——双指针算法
c++·算法
moonlifesudo10 小时前
322:零钱兑换(三种方法)
算法
NAGNIP1 天前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队1 天前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
Fanxt_Ja1 天前
【LeetCode】算法详解#15 ---环形链表II
数据结构·算法·leetcode·链表
侃侃_天下1 天前
最终的信号类
开发语言·c++·算法