leetcode-42.接雨水

dp

使用动态规划的方法来解决"接雨水"问题也是一种有效的策略。动态规划的基本思想是预先计算出每个位置的左侧和右侧的最大高度,然后根据这些预计算的结果来确定每个位置可以存储的雨水量。

动态规划方法

算法步骤
  1. 初始化

    • 创建两个数组 leftMaxrightMax,用于存储每个位置左侧和右侧的最大高度。
    • 初始化 water 为 0,用于存储总的雨水量。
  2. 计算左侧最大高度

    • 从左到右遍历高度数组,填充 leftMax 数组。
    • 对于每个位置 ileftMax[i]height[0]height[i] 的最大值。
  3. 计算右侧最大高度

    • 从右到左遍历高度数组,填充 rightMax 数组。
    • 对于每个位置 irightMax[i]height[i]height[n-1] 的最大值。
  4. 计算雨水量

    • 遍历每个位置,计算当前位置能接的雨水量为 min(leftMax[i], rightMax[i]) - height[i]
    • 将每个位置的雨水量累加到 water
  5. 返回结果

    • 返回 water,即总的雨水量。
Java 实现
java 复制代码
class Solution {
    public int trap(int[] height) {
        int ans = 0;
        int len = height.length;
        int[] dpLeft = new int[len];
        int[] dpRight = new int[len];
        // init
        dpLeft[0] = height[0];
        dpRight[len - 1] = height[len - 1];
        // core
        for (int i = 1; i < len; i++) {
            dpLeft[i] = Math.max(dpLeft[i - 1], height[i]);
        }
        for (int i = len - 2; i >= 0; i--) {
            dpRight[i] = Math.max(dpRight[i + 1], height[i]);
        }
        for (int i = 0; i < len; i++) {
            ans += Math.min(dpLeft[i], dpRight[i]) - height[i];
        }
        return ans;
    }
}

代码说明

  • 左侧最大高度数组 leftMax:用于存储每个位置左侧的最大柱子高度。
  • 右侧最大高度数组 rightMax:用于存储每个位置右侧的最大柱子高度。
  • 雨水计算 :对于每个位置,雨水量是 min(leftMax[i], rightMax[i]) - height[i],即当前位置能存储的水量。

这种方法的时间复杂度为 O(n),空间复杂度为 O(n),因为需要额外的两个数组来存储左侧和右侧的最大高度。

相关推荐
Andrew_Ryan10 分钟前
llama.cpp Build Instructions
算法
玖剹16 分钟前
递归练习题(四)
c语言·数据结构·c++·算法·leetcode·深度优先·深度优先遍历
做人不要太理性16 分钟前
【Linux系统】线程的同步与互斥:核心原理、锁机制与实战代码
linux·服务器·算法
向阳逐梦26 分钟前
DC-DC Buck 电路(降压转换器)全面解析
人工智能·算法
Mz122129 分钟前
day04 小美的区间删除
数据结构·算法
_OP_CHEN38 分钟前
算法基础篇:(十九)吃透 BFS!从原理到实战,解锁宽度优先搜索的核心玩法
算法·蓝桥杯·bfs·宽度优先·算法竞赛·acm/icpc
小猪咪piggy1 小时前
【算法】day 20 leetcode 贪心
算法·leetcode·职场和发展
forestsea1 小时前
现代 JavaScript 加密技术详解:Web Crypto API 与常见算法实践
前端·javascript·算法
张洪权1 小时前
bcrypt 加密
算法
快手技术1 小时前
视频理解霸榜!快手 Keye-VL 旗舰模型重磅开源,多模态视频感知领头羊
算法