leetcode-42.接雨水

dp

使用动态规划的方法来解决"接雨水"问题也是一种有效的策略。动态规划的基本思想是预先计算出每个位置的左侧和右侧的最大高度,然后根据这些预计算的结果来确定每个位置可以存储的雨水量。

动态规划方法

算法步骤
  1. 初始化

    • 创建两个数组 leftMaxrightMax,用于存储每个位置左侧和右侧的最大高度。
    • 初始化 water 为 0,用于存储总的雨水量。
  2. 计算左侧最大高度

    • 从左到右遍历高度数组,填充 leftMax 数组。
    • 对于每个位置 ileftMax[i]height[0]height[i] 的最大值。
  3. 计算右侧最大高度

    • 从右到左遍历高度数组,填充 rightMax 数组。
    • 对于每个位置 irightMax[i]height[i]height[n-1] 的最大值。
  4. 计算雨水量

    • 遍历每个位置,计算当前位置能接的雨水量为 min(leftMax[i], rightMax[i]) - height[i]
    • 将每个位置的雨水量累加到 water
  5. 返回结果

    • 返回 water,即总的雨水量。
Java 实现
java 复制代码
class Solution {
    public int trap(int[] height) {
        int ans = 0;
        int len = height.length;
        int[] dpLeft = new int[len];
        int[] dpRight = new int[len];
        // init
        dpLeft[0] = height[0];
        dpRight[len - 1] = height[len - 1];
        // core
        for (int i = 1; i < len; i++) {
            dpLeft[i] = Math.max(dpLeft[i - 1], height[i]);
        }
        for (int i = len - 2; i >= 0; i--) {
            dpRight[i] = Math.max(dpRight[i + 1], height[i]);
        }
        for (int i = 0; i < len; i++) {
            ans += Math.min(dpLeft[i], dpRight[i]) - height[i];
        }
        return ans;
    }
}

代码说明

  • 左侧最大高度数组 leftMax:用于存储每个位置左侧的最大柱子高度。
  • 右侧最大高度数组 rightMax:用于存储每个位置右侧的最大柱子高度。
  • 雨水计算 :对于每个位置,雨水量是 min(leftMax[i], rightMax[i]) - height[i],即当前位置能存储的水量。

这种方法的时间复杂度为 O(n),空间复杂度为 O(n),因为需要额外的两个数组来存储左侧和右侧的最大高度。

相关推荐
智驱力人工智能5 小时前
工厂智慧设备检测:多模态算法提升工业安全阈值
人工智能·算法·安全·边缘计算·智慧工厂·智能巡航·工厂设备检测
茴香豆的茴15 小时前
转码刷 LeetCode 笔记[2]:203. 移除链表元素(python)
笔记·leetcode·链表
2501_924731477 小时前
城市路口识别准确率↑31%!陌讯时空建模算法在交通拥堵识别中的突破
人工智能·算法·目标检测·计算机视觉·目标跟踪
熬了夜的程序员8 小时前
【华为机试】208. 实现 Trie (前缀树)
数据结构·算法·华为od·华为
小O的算法实验室10 小时前
2024年ESWA SCI1区TOP,自适应种群分配和变异选择差分进化算法iDE-APAMS,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
不吃洋葱.11 小时前
左子树之和
算法
金融小师妹11 小时前
基于AI量化模型的比特币周期重构:传统四年规律是否被算法因子打破?
大数据·人工智能·算法
数据智能老司机12 小时前
图算法趣味学——最短路径
数据结构·算法·云计算
快去睡觉~13 小时前
力扣109:有序链表转换二叉搜索树
算法·leetcode·链表
是Dream呀13 小时前
YOLOv8深度解析:从架构革新到应用实践
人工智能·算法