leetcode-42.接雨水

dp

使用动态规划的方法来解决"接雨水"问题也是一种有效的策略。动态规划的基本思想是预先计算出每个位置的左侧和右侧的最大高度,然后根据这些预计算的结果来确定每个位置可以存储的雨水量。

动态规划方法

算法步骤
  1. 初始化

    • 创建两个数组 leftMaxrightMax,用于存储每个位置左侧和右侧的最大高度。
    • 初始化 water 为 0,用于存储总的雨水量。
  2. 计算左侧最大高度

    • 从左到右遍历高度数组,填充 leftMax 数组。
    • 对于每个位置 ileftMax[i]height[0]height[i] 的最大值。
  3. 计算右侧最大高度

    • 从右到左遍历高度数组,填充 rightMax 数组。
    • 对于每个位置 irightMax[i]height[i]height[n-1] 的最大值。
  4. 计算雨水量

    • 遍历每个位置,计算当前位置能接的雨水量为 min(leftMax[i], rightMax[i]) - height[i]
    • 将每个位置的雨水量累加到 water
  5. 返回结果

    • 返回 water,即总的雨水量。
Java 实现
java 复制代码
class Solution {
    public int trap(int[] height) {
        int ans = 0;
        int len = height.length;
        int[] dpLeft = new int[len];
        int[] dpRight = new int[len];
        // init
        dpLeft[0] = height[0];
        dpRight[len - 1] = height[len - 1];
        // core
        for (int i = 1; i < len; i++) {
            dpLeft[i] = Math.max(dpLeft[i - 1], height[i]);
        }
        for (int i = len - 2; i >= 0; i--) {
            dpRight[i] = Math.max(dpRight[i + 1], height[i]);
        }
        for (int i = 0; i < len; i++) {
            ans += Math.min(dpLeft[i], dpRight[i]) - height[i];
        }
        return ans;
    }
}

代码说明

  • 左侧最大高度数组 leftMax:用于存储每个位置左侧的最大柱子高度。
  • 右侧最大高度数组 rightMax:用于存储每个位置右侧的最大柱子高度。
  • 雨水计算 :对于每个位置,雨水量是 min(leftMax[i], rightMax[i]) - height[i],即当前位置能存储的水量。

这种方法的时间复杂度为 O(n),空间复杂度为 O(n),因为需要额外的两个数组来存储左侧和右侧的最大高度。

相关推荐
老蒋新思维14 分钟前
反脆弱性设计:创始人IP与AI智能体如何构建愈动荡愈强大的知识商业|创客匠人
人工智能·网络协议·tcp/ip·算法·机器学习·创始人ip·创客匠人
Salt_072819 分钟前
DAY 36 官方文档的阅读
python·算法·机器学习·github
明洞日记1 小时前
【VTK手册027】VTK 颜色连续映射:vtkColorTransferFunction 深度解析与实战指南
c++·图像处理·算法·vtk·图形渲染
B_lack0262 小时前
西门子PLC结构化编程_线性插值算法功能块
算法·pid·西门子plc·博途·线性插值·开环控制
fufu03112 小时前
Linux环境下的C语言编程(四十三)
linux·c语言·算法
业精于勤的牙2 小时前
三角形最小路径和(二)
算法
风筝在晴天搁浅2 小时前
hot100 239.滑动窗口最大值
数据结构·算法·leetcode
夏乌_Wx3 小时前
练题100天——DAY31:相对名次+数组拆分+重塑矩阵
数据结构·算法
LYFlied3 小时前
【算法解题模板】-解二叉树相关算法题的技巧
前端·数据结构·算法·leetcode
Ven%3 小时前
【AI大模型算法工程师面试题解析与技术思考】
人工智能·python·算法