leetcode-42.接雨水

dp

使用动态规划的方法来解决"接雨水"问题也是一种有效的策略。动态规划的基本思想是预先计算出每个位置的左侧和右侧的最大高度,然后根据这些预计算的结果来确定每个位置可以存储的雨水量。

动态规划方法

算法步骤
  1. 初始化

    • 创建两个数组 leftMaxrightMax,用于存储每个位置左侧和右侧的最大高度。
    • 初始化 water 为 0,用于存储总的雨水量。
  2. 计算左侧最大高度

    • 从左到右遍历高度数组,填充 leftMax 数组。
    • 对于每个位置 ileftMax[i]height[0]height[i] 的最大值。
  3. 计算右侧最大高度

    • 从右到左遍历高度数组,填充 rightMax 数组。
    • 对于每个位置 irightMax[i]height[i]height[n-1] 的最大值。
  4. 计算雨水量

    • 遍历每个位置,计算当前位置能接的雨水量为 min(leftMax[i], rightMax[i]) - height[i]
    • 将每个位置的雨水量累加到 water
  5. 返回结果

    • 返回 water,即总的雨水量。
Java 实现
java 复制代码
class Solution {
    public int trap(int[] height) {
        int ans = 0;
        int len = height.length;
        int[] dpLeft = new int[len];
        int[] dpRight = new int[len];
        // init
        dpLeft[0] = height[0];
        dpRight[len - 1] = height[len - 1];
        // core
        for (int i = 1; i < len; i++) {
            dpLeft[i] = Math.max(dpLeft[i - 1], height[i]);
        }
        for (int i = len - 2; i >= 0; i--) {
            dpRight[i] = Math.max(dpRight[i + 1], height[i]);
        }
        for (int i = 0; i < len; i++) {
            ans += Math.min(dpLeft[i], dpRight[i]) - height[i];
        }
        return ans;
    }
}

代码说明

  • 左侧最大高度数组 leftMax:用于存储每个位置左侧的最大柱子高度。
  • 右侧最大高度数组 rightMax:用于存储每个位置右侧的最大柱子高度。
  • 雨水计算 :对于每个位置,雨水量是 min(leftMax[i], rightMax[i]) - height[i],即当前位置能存储的水量。

这种方法的时间复杂度为 O(n),空间复杂度为 O(n),因为需要额外的两个数组来存储左侧和右侧的最大高度。

相关推荐
董董灿是个攻城狮1 小时前
5分钟搞懂什么是窗口注意力?
算法
Dann Hiroaki1 小时前
笔记分享: 哈尔滨工业大学CS31002编译原理——02. 语法分析
笔记·算法
qqxhb3 小时前
零基础数据结构与算法——第四章:基础算法-排序(上)
java·数据结构·算法·冒泡·插入·选择
FirstFrost --sy5 小时前
数据结构之二叉树
c语言·数据结构·c++·算法·链表·深度优先·广度优先
森焱森5 小时前
垂起固定翼无人机介绍
c语言·单片机·算法·架构·无人机
搂鱼1145145 小时前
(倍增)洛谷 P1613 跑路/P4155 国旗计划
算法
Yingye Zhu(HPXXZYY)5 小时前
Codeforces 2021 C Those Who Are With Us
数据结构·c++·算法
无聊的小坏坏6 小时前
三种方法详解最长回文子串问题
c++·算法·回文串
长路 ㅤ   7 小时前
Java后端技术博客汇总文档
分布式·算法·技术分享·编程学习·java后端
秋说7 小时前
【PTA数据结构 | C语言版】两枚硬币
c语言·数据结构·算法