机器学习分子动力学

"AI for Science"时代,机器学习分子动力学+机器学习第一性原理专题!https://mp.weixin.qq.com/s/icdBcJbKhOqtAymEpZds2A

《基于机器学习的分子动力学》

1. 第一天理论内容

a) 诺贝尔奖的AI元年

i. AI与 SCIENCE的交叉:

b) 科学研究的四范式

i. 从大数据时代到AI4SCIENCE时代,如Google DeepMind/微软研究院/Meta FAIR等著名AI团队的AI4SCIENCE工作介绍

c) AI4SCIENCE时代的分子动力学模拟

i. 分子模拟基本方法与发展历史

ii. 经验力场与第一性原理方法的对比与区别

iii. 机器学习力场方法的兴起

d) 基于机器学习的分子动力学方法在各个领域的应用情况与发展趋势,以及相关支撑项目

e) 机器学习的分子动力学的特点,分类和工作流程

f)数据集的常见收集方式与建议

  1. 实操内容

a) Linux系统与超算服务器的常规操

i. ls/ll/cd/cp/mv/cat/pwd/less/tail/mkdir/touch以及vim的常见操作

b) 虚拟环境(Anaconda或Mamba)的使用

i. conda create/activate/deactivate/install/info/env等命令

c) Python的集成开发环境(IDE)的介绍与基本使用

i. Python的基本数据类型

ii. Pycharm的常见用法与代码调试,以及虚拟环境的配套

d) 分子模拟软件介绍

i. LAMMPS的入门与使用

  1. 软件发展趋势与特点

  2. 大规模并行的原理:域分解算法介绍

  3. 输入文件的详细解析与注意事项

  4. 相关势函数和晶格常数的获取渠道

  5. 分子模拟轨迹的后处理与分析:径向分布函数与扩散系数

  6. 机器学习势函数在LAMMPS中的使用

ii. OpenMM的入门与使用

  1. 软件发展趋势与方法特点

  2. 运行脚本与注意事项

  3. GAFF(Amber)力场的简要介绍

  4. 使用sobtop软件和Python快速、自动化生成任意有机分子的力场参数文件(同时也适用GROMACS)

e)量子化学计算软件的介绍与快速上手

i.量子化学中常见理论方法的分类与区别,DFT相关泛函的简要介绍

ii. CP2K软件的介绍与快速上手:

  1. 软件发展趋势与特点

  2. 安装与使用,以及赝势文件的介绍与获取

  3. 使用MULTIWFN软件快速生成CP2K的单点能或分子动力学模拟的输入文件

  4. 输入文件的字段解释与注意事项

  5. 使用Python实现自动化提交任务与任务后处理

  6. 在CP2K中使用GFN1-xTB方法,适合新手快速入门的理论方法

iii. ORCA软件的介绍与特点:

  1. 软件发展趋势与特点

  2. 使用MULTIWFN软件快速生成单点能或分子动力学模拟的输入文件,以及注意事项

  3. 使用Python实现自动化提交任务与任务后处理

  4. ωB97M-V泛函的介绍与在ORCA中的使用

iv.XTB软件的发展介绍与特点:

1.软件发展趋势与特点:发展迅猛!年被引用增长率高达87%;能够执行单点能,几何优化,分子模拟等功能

  1. 安装与常用命令

  2. GFN系列方法的简要介绍

  3. 使用Python实现自动化提交任务与任务后处理

v. DFTB(简单介绍)

  1. 执行单点能,几何优化,分子模拟等

  2. 使用Python实现自动化提交任务与任务后处理

f) 案例:传统力场方法与机器方法力场方法的对比

i. 使用OpenMM执行有机体系的分子模拟

ii. 基于机器学习力场方法,结合LAMMPS执行合金体系,锂电池体系的分子模拟

iii. 使用MDtraj等软件进行模拟结果的后处理分析与Python高质量科研绘图,包括:能量与力的预测曲线,径向分布函数,键长键角二面角分布,电池电压曲线等.

3. 第二天理论内容(机器学习力场的模型设计)

a) 机器学习与深度学习的快速入门

i. 常见概念与分类

ii.机器学习的发展历史以及通用近似理论:

1.通过交互的可视化案例,理解神经网络的通用近似理论

  1. 解释神经网络对GPU的依赖

iii. 神经元,反向梯度下降,损失函数,过/欠拟合,残差连接等基本概念

iv. ANN, CNN, RNN, TRANSFORMER,ResNet等经典深度神经网络的基本框架的介绍与特点

v. 相关学习资源的推荐

vi. Pytorch与Tensorflow的发展现状

b) 科学领域的机器学习模型介绍

i.AI模型在SCIENCE领域需要遵守的几个物理约束/物理对称性

ii.高效描述局部环境方法的分类与特点

  1. 基于核方法或深度神经网络方法

  2. 基于描述符或分子图方法

iii. 基于描述符的机器学习力场模型

  1. HDNNPs(BPNN)模型详解与发展

a) 机器学习力场的开篇工作

  1. 有机体系的ANI模型的介绍

  2. 生态最好的机器学习力场模型

a) DeePMD系列工作的详解

b) DeePMD的发展和几种描述符的介绍,特点与应用

c) DeePMD的压缩原理与特点

d) DPGEN的工作原理

iv. 基于图框架的机器学习力场模型

  1. 图神经网络、图卷积网络和消息传递神经网络的发展与理解

  2. 图神经网络的机器学习力场模型的经典模型

  3. SchNet模型的特点与代码实现

4.基于三维空间建模的完备性与效率的几何系列模型:

a)DimeNet, SphereNet和ComENet模型的详解与比较

  1. 其他机器学习力场模型概述:DTNN和PhysNet等

c) 实操内容

i. DeePMD的离线安装与验证测试

ii. DeePMD输入文件详解:与理论课的模型框架相对应地进行超参数设定的讲解,及使用经验

iii. DeePMD的常见功能,包括训练,重启,冻结,压缩和测试

iv. DeePMD的常见问题与训练过程的分析

v. 综合使用LAMMPS和DeePMD, 执行高精度的分子动力学模拟

vi. 分子模拟的数据后处理与分析

vii. DPGEN软件的安装,介绍与工作流程

viii. DPGEN软件的输入和输出文件:param.json和machine.json文件的参数详解

ix. DPGEN软件跨计算分区的提交任务示例;不同量化级别方法的示例

x. DPGEN软件的常用命令与使用经验,以及不同体系收敛的参考标准

4. 第三天(高级课程 ------ 等变模型系列,领域热点)

a) 不变系列模型的总结

b)等变模型的概念,特点,分类和应用

c)等变的概念

d) 等变模型的分类与特点

e) 高阶等变模型的介绍:超高数据利用率与优秀的泛化能力

f) 群的简要介绍

g) SO(3)群的简单入门与张量积

h) 欧式神经网络(E3NN)的介绍与注意事项

i) 高阶等变模型与传统模型,经验力场的区别

j) 常见误区的提醒

k) 等变机器学习力场的经典模型

i. Nat. Commun.上高被引的NequIP模型的详解和代码框架

l) 实操内容

i. DeePMD软件的进阶使用与补充讲解,包括多GPU并行训练

ii. LAMMPS以多GPU并行方式运行机器学习力场模型

iii. 使用Python代码快速可视化机器学习力场模型在等变与不变设计上的区别

iv. 使用多种机器学习的降维方法,结合K-Means聚类,从分子模拟轨迹中以低冗余方式提取多帧结构文件。

v. NequIP模型的超参数介绍和使用

vi. 复现Nat. Commun.文章结果,包括计算径向分布函数、键角分布等性质

vii. 使用wandb进行超参数调优与训练过程中各种信息的可视化分析

5. 第四天

a) 高效/高精度的基于ACE的等变模型

b) ACE方法,消息传递和等变框架的集大成者:MACE模型

c) 方法的完备性,效率和系列发展

d) MACE模型在多个领域的应用

e) 机器学习力场领域的ChatGPT模型

f) 有机分子体系的通用大模型:MACE-OFF23

g)几乎涵盖元素周期表所有元素的材料领域的通用大模型:MACE-MP0

h)其他大模型的简要介绍

i) 适用于大规模GPU并行框架的等变模型

i. 消息传递模型的不足

ii. NequIP团队在Nat. Commun.上的新作--Allegro模型的方法详解与比较

iii. SevenNet模型的介绍与比较

j) 实操部分

i. MACE模型和Allegro模型的超参数介绍和使用经验

ii. MACE模型与DeePMD模型的对比,包括精度,数据效率等

iii. Libtorch与LAMMPS软件的编译

iv. 机器学习力场领域的ChatGPT的使用与分析

v. 快速上手MACE-OFF23和MACE-MP0模型

vi. 对通用大模型进行微调与分析

vii.DPA-1和DPA-2的介绍与特点

"AI for Science"时代,机器学习分子动力学+机器学习第一性原理专题!https://mp.weixin.qq.com/s/icdBcJbKhOqtAymEpZds2A

相关推荐
旧故新长4 分钟前
支持Function Call的本地ollama模型对比评测-》开发代理agent
人工智能·深度学习·机器学习
微学AI17 分钟前
融合注意力机制和BiGRU的电力领域发电量预测项目研究,并给出相关代码
人工智能·深度学习·自然语言处理·注意力机制·bigru
知来者逆28 分钟前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
一勺汤31 分钟前
YOLOv11改进-双Backbone架构:利用双backbone提高yolo11目标检测的精度
人工智能·yolo·双backbone·double backbone·yolo11 backbone·yolo 双backbone
武汉唯众智创33 分钟前
高职人工智能技术应用专业(计算机视觉方向)实训室解决方案
人工智能·计算机视觉·人工智能实训室·计算机视觉实训室·人工智能计算机视觉实训室
Johny_Zhao44 分钟前
MySQL 高可用集群搭建部署
linux·人工智能·mysql·信息安全·云计算·shell·yum源·系统运维·itsm
一只可爱的小猴子1 小时前
2022李宏毅老师机器学习课程笔记
人工智能·笔记·机器学习
地瓜机器人1 小时前
乐聚机器人与地瓜机器人达成战略合作,联合发布Aelos Embodied具身智能
人工智能·机器人
带娃的IT创业者1 小时前
《AI大模型趣味实战》基于RAG向量数据库的知识库AI问答助手设计与实现
数据库·人工智能
__Benco1 小时前
OpenHarmony - 小型系统内核(LiteOS-A)(十),魔法键使用方法,用户态异常信息说明
人工智能·harmonyos