深度学习论文复现【Ubuntu22.04】

论文介绍

论文题目:ShapeFormer: Shapelet Transformer for Multivariate Time Series Classification

论文PDF:https://arxiv.org/pdf/2405.14608

论文代码:https://github.com/xuanmay2701/shapeformer

论文内容:多元时间序列分类

环境配置准备工作

前几天使用Windows复现论文,遇到了一些困难,并且也记录了过程,可以参看:Windows复现论文,但是没成功。接下来使用Linux来复现一下。

  1. 安装驱动
    参考链接:显卡驱动安装
  2. 安装Anaconda和Pycharm
    参考链接:安装anaconda和pycharm
  3. 安装Anaconda+Pycharm
    参考链接:安装cuda+cudnn

根据论文创建虚拟环境

  1. 创建虚拟环境

    每一个项目用到的包可能版本都不同,anaconda为我们提供了虚拟环境的功能。使用以下命令创建虚拟环境:

    bash 复制代码
    conda create -n ShapeFormer python=3.8 -y
  2. 激活虚拟环境

    bash 复制代码
    conda activate ShapeFormer
  3. 安装requirements.txt 中的包:

    bash 复制代码
    pip install -r requirements.txt

    说需要pip版本小于24.1,查看pip版本:(24.2)

    降低pip版本:

    bash 复制代码
    python -m pip install pip==24.0

    重新安装requirements.txt 中的包:

    bash 复制代码
    pip install -r requirements.txt

    直接成功(Windows折腾了好久都没成功):

Pycharm运行代码

  1. 用Pycharm打开项目代码:

  2. 配置虚拟环境解释器

  3. 运行main.py文件

    因为都有默认参数,所以先不管性能好坏,运行起来最重要:

  4. 解决报错

    发现是sktime包的问题,之前在Windows上也是这个包事多(没有Windows版本的,需要自己编译源代码)。

    先查看sktime版本和论文提供代码的是否一致:

    powershell 复制代码
    conda list

    安装的0.4.3是和论文的一样:

    大概率就是sktime版本更新后,这个函数没了(可能函数名换了,或者路径换了),发现论文代码上面有三个不同路径导入这个函数,我试了下第一个可以导入这个函数:

  5. 再次运行main.py

    没有这个包,安装一下(requirements.txt居然没提供),在这个虚拟环境下安装:

    powershell 复制代码
    pip install seaborn
  6. 结果展示

总结

这篇论文代码基本可以运行,我更改参数后也有一点问题,这就需要阅读代码了,后面我会出一期代码阅读的文章。

还有就是尽量使用Linux来复现论文,Windows太麻烦了。

相关推荐
特立独行的猫a4 分钟前
告别碎片化笔记:基于n8n-mcp的AI写作助手实战
人工智能·笔记·ai写作·n8n·n8n-mcp
oioihoii6 分钟前
构建高并发AI服务网关:C++与gRPC的工程实践
开发语言·c++·人工智能
范桂飓14 分钟前
大模型分布式训练框架 Megatron-LM
人工智能·分布式
星云数灵20 分钟前
大模型高级工程师考试练习题6
人工智能·大模型·大模型工程师·阿里云大模型aca·阿里云大模型工程师acp·大模型acp考试题库·acp认证
全栈技术负责人22 分钟前
AI时代前端工程师的转型之路
前端·人工智能
三万棵雪松23 分钟前
【AI小智硬件程序(四)】
人工智能·嵌入式·esp32·ai小智
亚里随笔29 分钟前
GenEnv:让AI智能体像人一样在_游戏_中成长
人工智能·游戏·llm·rl·agentic
少林码僧38 分钟前
2.29 XGBoost、LightGBM、CatBoost对比:三大梯度提升框架选型指南
人工智能·机器学习·ai·数据挖掘·数据分析·回归
喝拿铁写前端40 分钟前
当 AI 会写代码之后,我们应该怎么“管”它?
前端·人工智能
春日见42 分钟前
控制算法:PP(纯跟踪)算法
linux·人工智能·驱动开发·算法·机器学习