视觉语言模型 Qwen2-VL

视觉语言模型 Qwen2-VL

flyfish

py 复制代码
from PIL import Image
import requests
import torch
from torchvision import io
from typing import Dict
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from modelscope import snapshot_download

# 下载模型快照并指定保存目录
model_dir = snapshot_download("qwen/Qwen2-VL-7B-Instruct")

# 加载模型到可用设备(CPU或GPU),并使用自动精度(根据设备自动选择)
model = Qwen2VLForConditionalGeneration.from_pretrained(
    model_dir, torch_dtype="auto", device_map="auto"
)

# 加载图像处理器
processor = AutoProcessor.from_pretrained(model_dir)

# 图像的URL
url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"

# 从给定的URL加载图像
image = Image.open(requests.get(url, stream=True).raw)

# 定义对话历史,包括用户输入的文本和图像
conversation = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]

# 使用处理器应用聊天模板,并添加生成提示
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

# 预处理输入数据,将文本和图像转换为模型可以接受的格式
inputs = processor(
    text=[text_prompt], images=[image], padding=True, return_tensors="pt"
)

# 将输入数据移动到CUDA设备上(如果可用的话)
inputs = inputs.to("cuda")

# 推理:生成输出文本
output_ids = model.generate(**inputs, max_new_tokens=128)  # 最大新生成token数量为128

# 提取生成的token ID,去掉输入的原始token ID
generated_ids = [
    output_ids[len(input_ids) :]
    for input_ids, output_ids in zip(inputs.input_ids, output_ids)
]

# 解码生成的token ID为人类可读的文本
output_text = processor.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)

# 打印生成的描述文本
print(output_text)
相关推荐
瑞瑞大大4 分钟前
简单介绍下Manus功能
人工智能
小杨4048 分钟前
python入门系列六(文件操作)
人工智能·python·pycharm
deephub14 分钟前
Chain of Draft: 借鉴人类草稿思维让大型语言模型更快地思考
人工智能·语言模型·自然语言处理·思维链
碣石潇湘无限路41 分钟前
【AI】基于扩散方案的大语言模型研究报告
人工智能·语言模型·自然语言处理
EasyCVR1 小时前
EasyRTC嵌入式音视频通话SDK:基于ICE与STUN/TURN的实时音视频通信解决方案
人工智能·音视频·webrtc·实时音视频·h.265
非优秀程序员1 小时前
使用Python给自己网站生成llms.txt
人工智能·后端·架构
二川bro1 小时前
AI 人工智能深度解析:从基础到前沿,全面掌握未来科技
人工智能·科技
非优秀程序员1 小时前
人工智能时代,如何让你的网站更好被大模型收录,获得新的自然流量并成为互联网的信息来源
人工智能·机器学习·架构
Dipeak数巅科技1 小时前
数巅科技携手智慧足迹深耕行业大模型应用
大数据·人工智能·商业智能bi
AI34561 小时前
AI壁纸进阶宝典:让创作效率与质量飞速提升的法门
人工智能