视觉语言模型 Qwen2-VL

视觉语言模型 Qwen2-VL

flyfish

py 复制代码
from PIL import Image
import requests
import torch
from torchvision import io
from typing import Dict
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from modelscope import snapshot_download

# 下载模型快照并指定保存目录
model_dir = snapshot_download("qwen/Qwen2-VL-7B-Instruct")

# 加载模型到可用设备(CPU或GPU),并使用自动精度(根据设备自动选择)
model = Qwen2VLForConditionalGeneration.from_pretrained(
    model_dir, torch_dtype="auto", device_map="auto"
)

# 加载图像处理器
processor = AutoProcessor.from_pretrained(model_dir)

# 图像的URL
url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"

# 从给定的URL加载图像
image = Image.open(requests.get(url, stream=True).raw)

# 定义对话历史,包括用户输入的文本和图像
conversation = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]

# 使用处理器应用聊天模板,并添加生成提示
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

# 预处理输入数据,将文本和图像转换为模型可以接受的格式
inputs = processor(
    text=[text_prompt], images=[image], padding=True, return_tensors="pt"
)

# 将输入数据移动到CUDA设备上(如果可用的话)
inputs = inputs.to("cuda")

# 推理:生成输出文本
output_ids = model.generate(**inputs, max_new_tokens=128)  # 最大新生成token数量为128

# 提取生成的token ID,去掉输入的原始token ID
generated_ids = [
    output_ids[len(input_ids) :]
    for input_ids, output_ids in zip(inputs.input_ids, output_ids)
]

# 解码生成的token ID为人类可读的文本
output_text = processor.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)

# 打印生成的描述文本
print(output_text)
相关推荐
yu41062123 分钟前
2025年中期大语言模型实力深度剖析
人工智能·语言模型·自然语言处理
feng995203 小时前
技术伦理双轨认证如何重构AI工程师能力评估体系——基于AAIA框架的技术解析与行业实证研究
人工智能·aaif·aaia·iaaai
2301_776681653 小时前
【用「概率思维」重新理解生活】
开发语言·人工智能·自然语言处理
蜡笔小新..3 小时前
从零开始:用PyTorch构建CIFAR-10图像分类模型达到接近1的准确率
人工智能·pytorch·机器学习·分类·cifar-10
富唯智能4 小时前
转运机器人可以绕障吗?
人工智能·智能机器人·转运机器人
沅_Yuan4 小时前
基于小波神经网络(WNN)的回归预测模型【MATLAB】
深度学习·神经网络·matlab·回归·小波神经网络·wnn
视觉语言导航4 小时前
湖南大学3D场景问答最新综述!3D-SQA:3D场景问答助力具身智能场景理解
人工智能·深度学习·具身智能
AidLux4 小时前
端侧智能重构智能监控新路径 | 2025 高通边缘智能创新应用大赛第三场公开课来袭!
大数据·人工智能
引量AI5 小时前
TikTok矩阵运营干货:从0到1打造爆款矩阵
人工智能·矩阵·自动化·tiktok矩阵·海外社媒
Hi-Dison5 小时前
神经网络极简入门技术分享
人工智能·深度学习·神经网络