视觉语言模型 Qwen2-VL

视觉语言模型 Qwen2-VL

flyfish

py 复制代码
from PIL import Image
import requests
import torch
from torchvision import io
from typing import Dict
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from modelscope import snapshot_download

# 下载模型快照并指定保存目录
model_dir = snapshot_download("qwen/Qwen2-VL-7B-Instruct")

# 加载模型到可用设备(CPU或GPU),并使用自动精度(根据设备自动选择)
model = Qwen2VLForConditionalGeneration.from_pretrained(
    model_dir, torch_dtype="auto", device_map="auto"
)

# 加载图像处理器
processor = AutoProcessor.from_pretrained(model_dir)

# 图像的URL
url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"

# 从给定的URL加载图像
image = Image.open(requests.get(url, stream=True).raw)

# 定义对话历史,包括用户输入的文本和图像
conversation = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]

# 使用处理器应用聊天模板,并添加生成提示
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

# 预处理输入数据,将文本和图像转换为模型可以接受的格式
inputs = processor(
    text=[text_prompt], images=[image], padding=True, return_tensors="pt"
)

# 将输入数据移动到CUDA设备上(如果可用的话)
inputs = inputs.to("cuda")

# 推理:生成输出文本
output_ids = model.generate(**inputs, max_new_tokens=128)  # 最大新生成token数量为128

# 提取生成的token ID,去掉输入的原始token ID
generated_ids = [
    output_ids[len(input_ids) :]
    for input_ids, output_ids in zip(inputs.input_ids, output_ids)
]

# 解码生成的token ID为人类可读的文本
output_text = processor.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)

# 打印生成的描述文本
print(output_text)
相关推荐
hay_lee1 分钟前
渐进式披露:Agent Skills让AI开发标准化
人工智能
阿里云云原生2 分钟前
探秘 AgentRun丨动态下发+权限隔离,重构 AI Agent 安全体系
人工智能·安全·阿里云·重构·agentrun
veminhe8 分钟前
人工智能学习笔记
人工智能
苍何fly8 分钟前
用腾讯版 Claude Code 做了个小红书封面图 Skills,已开源!
人工智能·经验分享
hnult11 分钟前
全功能学练考证在线考试平台,赋能技能认证
大数据·人工智能·笔记·课程设计
gang_unerry11 分钟前
量子退火与机器学习(4): 大模型 1-bit 量子化中的 QEP 与 QQA 准量子退火技术
人工智能·python·机器学习·量子计算
青瓷程序设计23 分钟前
【交通标志识别系统】python+深度学习+算法模型+Resnet算法+人工智能+2026计算机毕设项目
人工智能·python·深度学习
Mr.huang24 分钟前
RNN系列模型演进及其解决的问题
人工智能·rnn·lstm
香芋Yu28 分钟前
【深度学习教程——01_深度基石(Foundation)】05_数据太多怎么吃?Mini-batch训练的设计模式
深度学习·设计模式·batch
智驱力人工智能29 分钟前
货车走快车道检测 高速公路安全治理的工程实践与价值闭环 高速公路货车占用小客车道抓拍系统 城市快速路货车违规占道AI识别
人工智能·opencv·算法·安全·yolo·目标检测·边缘计算