视觉语言模型 Qwen2-VL

视觉语言模型 Qwen2-VL

flyfish

py 复制代码
from PIL import Image
import requests
import torch
from torchvision import io
from typing import Dict
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from modelscope import snapshot_download

# 下载模型快照并指定保存目录
model_dir = snapshot_download("qwen/Qwen2-VL-7B-Instruct")

# 加载模型到可用设备(CPU或GPU),并使用自动精度(根据设备自动选择)
model = Qwen2VLForConditionalGeneration.from_pretrained(
    model_dir, torch_dtype="auto", device_map="auto"
)

# 加载图像处理器
processor = AutoProcessor.from_pretrained(model_dir)

# 图像的URL
url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"

# 从给定的URL加载图像
image = Image.open(requests.get(url, stream=True).raw)

# 定义对话历史,包括用户输入的文本和图像
conversation = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]

# 使用处理器应用聊天模板,并添加生成提示
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

# 预处理输入数据,将文本和图像转换为模型可以接受的格式
inputs = processor(
    text=[text_prompt], images=[image], padding=True, return_tensors="pt"
)

# 将输入数据移动到CUDA设备上(如果可用的话)
inputs = inputs.to("cuda")

# 推理:生成输出文本
output_ids = model.generate(**inputs, max_new_tokens=128)  # 最大新生成token数量为128

# 提取生成的token ID,去掉输入的原始token ID
generated_ids = [
    output_ids[len(input_ids) :]
    for input_ids, output_ids in zip(inputs.input_ids, output_ids)
]

# 解码生成的token ID为人类可读的文本
output_text = processor.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)

# 打印生成的描述文本
print(output_text)
相关推荐
前端搬砖仔噜啦噜啦嘞6 分钟前
trae如何对接MCP(对接微信自动化MCP),编辑器里面也可以进行微信聊天啦
人工智能
MUTA️8 分钟前
《MAE: Masked Autoencoders Are Scalable Vision Learners》论文精读笔记
人工智能·笔记·深度学习·transformer
Ronin-Lotus11 分钟前
深度学习篇---昇腾NPU&CANN 工具包
人工智能·深度学习·npu·昇腾 cann
wenzhangli715 分钟前
AI+低代码双引擎驱动:重构智能业务系统的产品逻辑
人工智能·低代码·重构
倔强青铜三27 分钟前
苦练Python第5天:字符串从入门到格式化
人工智能·python·面试
PNP机器人29 分钟前
普林斯顿大学DPPO机器人学习突破:Diffusion Policy Policy Optimization 全新优化扩散策略
人工智能·深度学习·学习·机器人·仿真平台·franka fr3
Gyoku Mint37 分钟前
深度学习×第7卷:参数初始化与网络搭建——她第一次挑好初始的重量
人工智能·pytorch·rnn·深度学习·神经网络·算法·机器学习
mit6.8241 小时前
[Vroom] 位置与矩阵 | 路由集成 | 抽象,解耦与通信
c++·人工智能·算法
Brian Xia1 小时前
深度学习入门教程(三)- 线性代数教程
人工智能·深度学习·线性代数
lishaoan771 小时前
用TensorFlow进行逻辑回归(一)
人工智能·tensorflow·逻辑回归·分类器