视觉语言模型 Qwen2-VL

视觉语言模型 Qwen2-VL

flyfish

py 复制代码
from PIL import Image
import requests
import torch
from torchvision import io
from typing import Dict
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from modelscope import snapshot_download

# 下载模型快照并指定保存目录
model_dir = snapshot_download("qwen/Qwen2-VL-7B-Instruct")

# 加载模型到可用设备(CPU或GPU),并使用自动精度(根据设备自动选择)
model = Qwen2VLForConditionalGeneration.from_pretrained(
    model_dir, torch_dtype="auto", device_map="auto"
)

# 加载图像处理器
processor = AutoProcessor.from_pretrained(model_dir)

# 图像的URL
url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"

# 从给定的URL加载图像
image = Image.open(requests.get(url, stream=True).raw)

# 定义对话历史,包括用户输入的文本和图像
conversation = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
            },
            {"type": "text", "text": "Describe this image."},
        ],
    }
]

# 使用处理器应用聊天模板,并添加生成提示
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

# 预处理输入数据,将文本和图像转换为模型可以接受的格式
inputs = processor(
    text=[text_prompt], images=[image], padding=True, return_tensors="pt"
)

# 将输入数据移动到CUDA设备上(如果可用的话)
inputs = inputs.to("cuda")

# 推理:生成输出文本
output_ids = model.generate(**inputs, max_new_tokens=128)  # 最大新生成token数量为128

# 提取生成的token ID,去掉输入的原始token ID
generated_ids = [
    output_ids[len(input_ids) :]
    for input_ids, output_ids in zip(inputs.input_ids, output_ids)
]

# 解码生成的token ID为人类可读的文本
output_text = processor.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)

# 打印生成的描述文本
print(output_text)
相关推荐
机器懒得学习3 分钟前
智能股票分析系统
python·深度学习·金融
晟诺数字人4 分钟前
2026年海外直播变革:数字人如何改变游戏规则
大数据·人工智能·产品运营
蛋王派4 分钟前
DeepSeek-OCR-v2 模型解析和部署应用
人工智能·ocr
vx_biyesheji00017 分钟前
豆瓣电影推荐系统 | Python Django 协同过滤 Echarts可视化 深度学习 大数据 毕业设计源码
大数据·爬虫·python·深度学习·django·毕业设计·echarts
禁默9 分钟前
基于CANN的ops-cv仓库-多模态场景理解与实践
人工智能·cann
禁默18 分钟前
【硬核入门】无需板卡也能造 AI 算子?深度玩转 CANN ops-math 通用数学库
人工智能·aigc·cann
敏叔V58723 分钟前
AI智能体的工具学习进阶:零样本API理解与调用
人工智能·学习
徐小夕@趣谈前端32 分钟前
拒绝重复造轮子?我们偏偏花365天,用Vue3写了款AI协同的Word编辑器
人工智能·编辑器·word
阿里云大数据AI技术32 分钟前
全模态、多引擎、一体化,阿里云DLF3.0构建Data+AI驱动的智能湖仓平台
人工智能·阿里云·云计算
陈天伟教授33 分钟前
人工智能应用- 语言理解:05.大语言模型
人工智能·语言模型·自然语言处理