动手学深度学习d2l包M4芯片 gpu加速

conda创建环境

bash 复制代码
CONDA_SUBDIR=osx-arm64 conda create -n ml python=3.9 -c conda-forge
conda env config vars set CONDA_SUBDIR=osx-arm64
conda activate ml

pip安装包

bash 复制代码
pip install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
pip install transformers datasets
pip install matplotlib

下载del源文件

del链接

放到本地项目内

修改del下的torch.py的两个函数内容

python 复制代码
# 修改try gpu函数
def try_gpu(i=0):
    """Return gpu(i) if exists, otherwise return cpu().

    Defined in :numref:`sec_use_gpu`"""
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    try:
        return torch.device('mps')
    except:
        return torch.device('cpu')

# 修改try gpu函数
def try_all_gpus():
    """Return all available GPUs, or [cpu(),] if no GPU exists.

    Defined in :numref:`sec_use_gpu`"""
    devices = [torch.device(f'cuda:{i}')
               for i in range(torch.cuda.device_count())]
    try:
        device_macos = torch.device('mps')
    except:
        device_macos = torch.device('cpu')
    return devices if devices else [device_macos]

测试

运行lenet.ipynb测试效果

速度还可以。

还不懂的可以看M1版本的教程

相关推荐
黎燃6 分钟前
当 YOLO 遇见编剧:用自然语言生成技术把“目标检测”写成“目标剧情”
人工智能
算家计算7 分钟前
AI教母李飞飞团队发布最新空间智能模型!一张图生成无限3D世界,元宇宙越来越近了
人工智能·资讯
掘金一周10 分钟前
Flutter Riverpod 3.0 发布,大规模重构下的全新状态管理框架 | 掘金一周 9.18
前端·人工智能·后端
CoovallyAIHub26 分钟前
开源的消逝与新生:从 TensorFlow 的落幕到开源生态的蜕变
pytorch·深度学习·llm
用户51914958484539 分钟前
C#记录类型与集合的深度解析:从默认实现到自定义比较器
人工智能·aigc
IT_陈寒4 小时前
React 18实战:7个被低估的Hooks技巧让你的开发效率提升50%
前端·人工智能·后端
逛逛GitHub5 小时前
飞书多维表“独立”了!功能强大的超出想象。
人工智能·github·产品
机器之心5 小时前
刚刚,DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
人工智能·openai
CoovallyAIHub6 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub7 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉