动手学深度学习d2l包M4芯片 gpu加速

conda创建环境

bash 复制代码
CONDA_SUBDIR=osx-arm64 conda create -n ml python=3.9 -c conda-forge
conda env config vars set CONDA_SUBDIR=osx-arm64
conda activate ml

pip安装包

bash 复制代码
pip install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
pip install transformers datasets
pip install matplotlib

下载del源文件

del链接

放到本地项目内

修改del下的torch.py的两个函数内容

python 复制代码
# 修改try gpu函数
def try_gpu(i=0):
    """Return gpu(i) if exists, otherwise return cpu().

    Defined in :numref:`sec_use_gpu`"""
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    try:
        return torch.device('mps')
    except:
        return torch.device('cpu')

# 修改try gpu函数
def try_all_gpus():
    """Return all available GPUs, or [cpu(),] if no GPU exists.

    Defined in :numref:`sec_use_gpu`"""
    devices = [torch.device(f'cuda:{i}')
               for i in range(torch.cuda.device_count())]
    try:
        device_macos = torch.device('mps')
    except:
        device_macos = torch.device('cpu')
    return devices if devices else [device_macos]

测试

运行lenet.ipynb测试效果

速度还可以。

还不懂的可以看M1版本的教程

相关推荐
白熊18824 分钟前
【计算机视觉】OpenCV实战项目:基于OpenCV的车牌识别系统深度解析
人工智能·opencv·计算机视觉
IT古董1 小时前
【漫话机器学习系列】261.工具变量(Instrumental Variables)
人工智能·机器学习
小王格子1 小时前
AI 编程革命:腾讯云 CodeBuddy 如何重塑开发效率?
人工智能·云计算·腾讯云·codebuddy·craft
MonkeyKing_sunyuhua1 小时前
VSCode + Cline AI辅助编程完全指南
ide·人工智能·vscode
Leinwin1 小时前
Microsoft Azure 服务4月更新告示
人工智能·azure
胡耀超1 小时前
霍夫圆变换全面解析(OpenCV)
人工智能·python·opencv·算法·计算机视觉·数据挖掘·数据安全
jndingxin2 小时前
OpenCV CUDA 模块中用于在 GPU 上计算两个数组对应元素差值的绝对值函数absdiff(
人工智能·opencv·计算机视觉
jerry6092 小时前
LLM笔记(五)概率论
人工智能·笔记·学习·概率论
硅谷秋水2 小时前
学习以任务为中心的潜动作,随地采取行动
人工智能·深度学习·计算机视觉·语言模型·机器人