动手学深度学习d2l包M4芯片 gpu加速

conda创建环境

bash 复制代码
CONDA_SUBDIR=osx-arm64 conda create -n ml python=3.9 -c conda-forge
conda env config vars set CONDA_SUBDIR=osx-arm64
conda activate ml

pip安装包

bash 复制代码
pip install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
pip install transformers datasets
pip install matplotlib

下载del源文件

del链接

放到本地项目内

修改del下的torch.py的两个函数内容

python 复制代码
# 修改try gpu函数
def try_gpu(i=0):
    """Return gpu(i) if exists, otherwise return cpu().

    Defined in :numref:`sec_use_gpu`"""
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    try:
        return torch.device('mps')
    except:
        return torch.device('cpu')

# 修改try gpu函数
def try_all_gpus():
    """Return all available GPUs, or [cpu(),] if no GPU exists.

    Defined in :numref:`sec_use_gpu`"""
    devices = [torch.device(f'cuda:{i}')
               for i in range(torch.cuda.device_count())]
    try:
        device_macos = torch.device('mps')
    except:
        device_macos = torch.device('cpu')
    return devices if devices else [device_macos]

测试

运行lenet.ipynb测试效果

速度还可以。

还不懂的可以看M1版本的教程

相关推荐
z_mazin2 小时前
反爬虫机制中的验证码识别:类型、技术难点与应对策略
人工智能·计算机视觉·目标跟踪
lixy5792 小时前
深度学习3.7 softmax回归的简洁实现
人工智能·深度学习·回归
youhebuke2252 小时前
利用deepseek快速生成甘特图
人工智能·甘特图·deepseek
訾博ZiBo3 小时前
AI日报 - 2025年04月26日
人工智能
郭不耐3 小时前
DeepSeek智能时空数据分析(三):专业级地理数据可视化赏析-《杭州市国土空间总体规划(2021-2035年)》
人工智能·信息可视化·数据分析·毕业设计·数据可视化·城市规划
AI军哥3 小时前
MySQL8的安装方法
人工智能·mysql·yolo·机器学习·deepseek
余弦的倒数3 小时前
知识蒸馏和迁移学习的区别
人工智能·机器学习·迁移学习
Allen Bright3 小时前
【机器学习-线性回归-2】理解线性回归中的连续值与离散值
人工智能·机器学习·线性回归
青松@FasterAI4 小时前
【程序员 NLP 入门】词嵌入 - 上下文中的窗口大小是什么意思? (★小白必会版★)
人工智能·自然语言处理
AIGC大时代4 小时前
高效使用DeepSeek对“情境+ 对象 +问题“型课题进行开题!
数据库·人工智能·算法·aigc·智能写作·deepseek