动手学深度学习d2l包M4芯片 gpu加速

conda创建环境

bash 复制代码
CONDA_SUBDIR=osx-arm64 conda create -n ml python=3.9 -c conda-forge
conda env config vars set CONDA_SUBDIR=osx-arm64
conda activate ml

pip安装包

bash 复制代码
pip install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
pip install transformers datasets
pip install matplotlib

下载del源文件

del链接

放到本地项目内

修改del下的torch.py的两个函数内容

python 复制代码
# 修改try gpu函数
def try_gpu(i=0):
    """Return gpu(i) if exists, otherwise return cpu().

    Defined in :numref:`sec_use_gpu`"""
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    try:
        return torch.device('mps')
    except:
        return torch.device('cpu')

# 修改try gpu函数
def try_all_gpus():
    """Return all available GPUs, or [cpu(),] if no GPU exists.

    Defined in :numref:`sec_use_gpu`"""
    devices = [torch.device(f'cuda:{i}')
               for i in range(torch.cuda.device_count())]
    try:
        device_macos = torch.device('mps')
    except:
        device_macos = torch.device('cpu')
    return devices if devices else [device_macos]

测试

运行lenet.ipynb测试效果

速度还可以。

还不懂的可以看M1版本的教程

相关推荐
Liue612312313 小时前
基于YOLOv26的口罩佩戴检测与识别系统实现与优化
人工智能·yolo·目标跟踪
小二·5 小时前
Python Web 开发进阶实战 :AI 原生数字孪生 —— 在 Flask + Three.js 中构建物理世界实时仿真与优化平台
前端·人工智能·python
chinesegf5 小时前
文本嵌入模型的比较(一)
人工智能·算法·机器学习
哥布林学者5 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入 课后习题与代码实践
深度学习·ai
珠海西格电力5 小时前
零碳园区的能源结构优化需要哪些技术支持?
大数据·人工智能·物联网·架构·能源
Black蜡笔小新5 小时前
视频汇聚平台EasyCVR打造校园消防智能监管新防线
网络·人工智能·音视频
珠海西格电力科技5 小时前
双碳目标下,微电网为何成为能源转型核心载体?
网络·人工智能·物联网·云计算·智慧城市·能源
2501_941837265 小时前
【计算机视觉】基于YOLOv26的交通事故检测与交通状况分析系统详解_1
人工智能·yolo·计算机视觉
HyperAI超神经6 小时前
加州大学构建基于全连接神经网络的片上光谱仪,在芯片级尺寸上实现8纳米的光谱分辨率
人工智能·深度学习·神经网络·机器学习·ai编程
badfl6 小时前
AI漫剧技术方案拆解:NanoBanana+Sora视频生成全流程
人工智能·ai·ai作画