【NLP 10、优化器 ① SGD 随机梯度下降优化器】

目录

一、定义

二、什么是梯度下降

三、SGD的工作原理

四、SGD的优化公式(更新规则)

五、SGD的优缺点

优点

缺点

六、如何选择学习率

七、使用SGD优化器训练一个简单的线性回归模型


祝你

随时攥紧偶然

永远拥有瞬间

------ 24.12.6

一、定义

随机梯度下降(Stochastic Gradient Descent,SGD) 是一种常用的优化算法,用于训练机器学习模型特别是神经网络。它通过迭代地更新模型参数来最小化损失函数


二、什么是梯度下降

梯度下降是一种优化算法,通过计算损失函数对模型参数的梯度(导数),然后沿着梯度的反方向更新参数,以使损失函数逐渐减小

SGD随机梯度下降优化器: 在每一步更新参数时,仅使用一个样本的梯度


三、SGD的工作原理

1.随机选择一个样本(或一个小批量样本)

2.计算该样本(或小批量样本)的梯度

3.按照梯度的反方向更新模型参数

4.重复上述步骤,直到满足停止条件(如达到最大迭代次数或损失函数收敛)


四、SGD的优化公式(更新规则)

假设我们有一个损失函数 L(θ),其中 θ是模型参数。SGD的更新规则为:

其中:

  • θt 是第 t 次迭代时的参数

  • η是学习率,控制每次更新的步长

  • ∇L(θt​)是损失函数在θt处的梯度


五、SGD的优缺点

优点

  • 计算效率高,因为每次只使用一个样本或小批量样本,减少了计算量

  • 可以快速收敛到损失函数的最小值,尤其是在损失函数不平整时

  • 有助于逃避免局部最小值

缺点

  • 由于噪声较大,损失函数的下降过程可能不稳定

  • 需要仔细选择学习率,否则可能发散或收敛过慢


六、如何选择学习率

  • 固定学习率 :在整个训练过程中使用一个固定的学习率

  • 学习率衰减 :随着训练的进行,逐渐降低学习率

  • 自适应学习率 :如Adam、RMSprop等优化器,可以自动调整学习率


七、使用SGD优化器训练一个简单的线性回归模型

**Learned parameters:**优化后的参数

python 复制代码
import numpy as np

# 使用SGD训练一个简单的线性回归模型

# 生成一些伪数据
np.random.seed(0)
X = np.random.rand(100, 1)
y = 2 + 3 * X + np.random.rand(100, 1)

# 初始化参数
theta = np.random.randn(2, 1)
learning_rate = 0.01
iterations = 1000

# 添加偏置项
X_b = np.c_[np.ones((100, 1)), X]

for i in range(iterations):
    # 随机选择一个样本
    idx = np.random.randint(0, 100)
    xi = X_b[idx:idx + 1]
    yi = y[idx:idx + 1]

    # 计算预测值
    predictions = np.dot(xi, theta)

    # 计算梯度
    gradient = 2 * xi.T.dot(predictions - yi)

    # 更新参数
    theta -= learning_rate * gradient

print("Learned parameters:")
print(theta)
相关推荐
G皮T3 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
人工智能·chatgpt·llm·大语言模型·deepseek·deepseek-v3·deepseek-r1
九年义务漏网鲨鱼3 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间3 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享3 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾4 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码4 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5894 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien4 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松5 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能
heart000_15 小时前
128K 长文本处理实战:腾讯混元 + 云函数 SCF 构建 PDF 摘要生成器
人工智能·自然语言处理·pdf