【NLP 10、优化器 ① SGD 随机梯度下降优化器】

目录

一、定义

二、什么是梯度下降

三、SGD的工作原理

四、SGD的优化公式(更新规则)

五、SGD的优缺点

优点

缺点

六、如何选择学习率

七、使用SGD优化器训练一个简单的线性回归模型


祝你

随时攥紧偶然

永远拥有瞬间

------ 24.12.6

一、定义

随机梯度下降(Stochastic Gradient Descent,SGD) 是一种常用的优化算法,用于训练机器学习模型特别是神经网络。它通过迭代地更新模型参数来最小化损失函数


二、什么是梯度下降

梯度下降是一种优化算法,通过计算损失函数对模型参数的梯度(导数),然后沿着梯度的反方向更新参数,以使损失函数逐渐减小

SGD随机梯度下降优化器: 在每一步更新参数时,仅使用一个样本的梯度


三、SGD的工作原理

1.随机选择一个样本(或一个小批量样本)

2.计算该样本(或小批量样本)的梯度

3.按照梯度的反方向更新模型参数

4.重复上述步骤,直到满足停止条件(如达到最大迭代次数或损失函数收敛)


四、SGD的优化公式(更新规则)

假设我们有一个损失函数 L(θ),其中 θ是模型参数。SGD的更新规则为:

其中:

  • θt 是第 t 次迭代时的参数

  • η是学习率,控制每次更新的步长

  • ∇L(θt​)是损失函数在θt处的梯度


五、SGD的优缺点

优点

  • 计算效率高,因为每次只使用一个样本或小批量样本,减少了计算量

  • 可以快速收敛到损失函数的最小值,尤其是在损失函数不平整时

  • 有助于逃避免局部最小值

缺点

  • 由于噪声较大,损失函数的下降过程可能不稳定

  • 需要仔细选择学习率,否则可能发散或收敛过慢


六、如何选择学习率

  • 固定学习率 :在整个训练过程中使用一个固定的学习率

  • 学习率衰减 :随着训练的进行,逐渐降低学习率

  • 自适应学习率 :如Adam、RMSprop等优化器,可以自动调整学习率


七、使用SGD优化器训练一个简单的线性回归模型

**Learned parameters:**优化后的参数

python 复制代码
import numpy as np

# 使用SGD训练一个简单的线性回归模型

# 生成一些伪数据
np.random.seed(0)
X = np.random.rand(100, 1)
y = 2 + 3 * X + np.random.rand(100, 1)

# 初始化参数
theta = np.random.randn(2, 1)
learning_rate = 0.01
iterations = 1000

# 添加偏置项
X_b = np.c_[np.ones((100, 1)), X]

for i in range(iterations):
    # 随机选择一个样本
    idx = np.random.randint(0, 100)
    xi = X_b[idx:idx + 1]
    yi = y[idx:idx + 1]

    # 计算预测值
    predictions = np.dot(xi, theta)

    # 计算梯度
    gradient = 2 * xi.T.dot(predictions - yi)

    # 更新参数
    theta -= learning_rate * gradient

print("Learned parameters:")
print(theta)
相关推荐
rayufo4 分钟前
包含思维链CoT的最小大模型
人工智能·chatgpt
麦麦大数据6 分钟前
M003_中药可视化系统开发实践:知识图谱与AI智能问答的完美结合
人工智能·flask·llm·vue3·知识图谱·neo4j·ner
生成论实验室33 分钟前
即事经:一种基于生成论的宇宙、生命与文明新范式
人工智能·科技·神经网络·算法·信息与通信
量子-Alex1 小时前
【大模型思维链】RAP中如何通过提示词将LLM改造为世界模型
人工智能·深度学习·机器学习
码农杂谈00071 小时前
企业人工智能:2026 避坑指南,告别工具摆设,实现 AI 价值变现
人工智能·百度
tuotali20261 小时前
氢气压缩机技术核心要点测评
大数据·人工智能
上进小菜猪1 小时前
基于 YOLOv8 的石头剪刀布手势识别系统工程实践 [目标检测完整源码]
深度学习
砚边数影2 小时前
模型持久化(二):从 KingbaseES 加载模型,实现离线预测
数据库·机器学习·kingbase·模型推理·数据库平替用金仓·金仓数据库
硅谷秋水2 小时前
多智体机器人系统(MARS)挑战的进展与创新
深度学习·机器学习·计算机视觉·语言模型·机器人·人机交互
systeminof2 小时前
从类比到迁移:研究解析大脑“举一反三”的神经基础
人工智能