Spark SQL 执行计划解析源码分析

本文用于记录Spark SQL执行计划解析的源码分析。文中仅对关键要点进行提及,无法面面具到,仅描述大体的框架。

Spark的Client有很多种,spark-sql,pyspark,spark- submit,R等各种提交方式,这里以spark.sql()方法作为源码分析入口:

在介绍具体的解析流程之前,我们画了一个图,图中展示了SQL被解析的各个阶段:

  1. SQL文本会经过antlr框架执行词法解析,语法解析,随后生成一个AST树,进入后续各个阶段的执行计划解析和优化
  2. 首先是进入parsing阶段,由Parser解析LogicalPlan,生成unresolved LogicalPlan。Parser是ParserInterface的实现,具体的继承关系如下图:
  3. 接下来进入analysis阶段,有Analyzer执行一系列的rule生成analyzed LogicalPlan。Analyzer继承自RuleExecutor,是一系列analyze的rule集合
  4. 接着进入optimization阶段,负责优化的是Optimizer,它也是继承自RuleExecutor,随后生成optimized LogicalPlan。
  5. optimized LogicalPlan会被被传递给SparkPlanner进入planning阶段,同样也是一系列的Rule,不同的是这一阶段已经到了物理计划的解析,输出结果不再是LogicalPlan,而是SparkPlan。
  6. 第一个planning阶段结束后,还会再次进去planning阶段,此时负责优化的是preparations(一些列针对SparkPlan优化的Rule),主要就是插入AQE相关的优化。此时生成的就是executedPlan。

至此,Spark SQL的执行计划(逻辑计划,物理计划)解析就告一段落,剩下的就是拿到executedPlan开始切分stage,task,申请资源进行调度,执行具体物理计划的逻辑了。

相关推荐
魔珐科技2 小时前
数字人助力企业出海增长,魔珐科技亮相2025晋江跨境电商峰会
大数据·人工智能·科技
如一@深声科技3 小时前
交互数字人:革新沟通的未来
大数据·人工智能·ai·aigc·交互
乙真仙人3 小时前
重新定义数据分析:LLM如何让人专注真正的思考
大数据·人工智能·信息可视化·数据挖掘·数据分析
十六ᵛᵃᵉ3 小时前
day10_Structured Steaming
spark
dami_king3 小时前
ElasticSearch|ES|架构介绍|原理浅析
大数据·elasticsearch·架构
yuanbenshidiaos5 小时前
【大数据】机器学习------决策树
大数据·决策树·机器学习
samLi06206 小时前
新型城镇化综合指标数据集(2016-2022年)
大数据
孤寒者11 小时前
MYSQL8创建新用户报错:You have an error in your SQL syntax;check...
数据库·sql·mysql·创建新用户操作
隔壁老登11 小时前
sql报错非法的字符校对Illegal mix of collations
数据库·sql
说私域12 小时前
社群团购项目运营策略的深度剖析:融合链动2+1模式、AI智能名片与S2B2C商城小程序的综合应用
大数据·人工智能·小程序