机器学习期末速成

文章参考自B站机器学习期末速成课

本文仅作者个人复习使用

一、机器学习分类

聚类和分类的区别:

分类:一开始就知道有哪些类别

聚类:一开始不知道有哪些类别

损失函数:简单来说就是你预测出来的结果和真实值的差距。

0-1损失函数:一般做二分类问题

数据特征工程,相当于对原始数据进行一定的清理和提纯。

二、逻辑回归







sigmoid函数会让输出值在0-1之间


求参数,比如w和b,一般用梯度下降算法。

三、决策树










信息熵和信息增益描述数据的混乱程度

Gini系数则是描述数据的纯度

两者都是越小越好

四、集成学习算法

















五、支持向量机

两个类别边缘上的点叫支持向量

硬间隔:完全分类准确

软间隔:存在分类错误的情况






六、聚类









七、特征工程和指标












相关推荐
杨_晨1 小时前
大模型微调训练FAQ - Loss与准确率关系
人工智能·经验分享·笔记·深度学习·机器学习·ai
Dyanic2 小时前
通用图像融合方法利用梯度迁移学习与融合规则展开
人工智能·机器学习·迁移学习
Yeats_Liao2 小时前
负载均衡设计:多节点集群下的请求分发与资源调度
运维·人工智能·深度学习·机器学习·华为·负载均衡
啊阿狸不会拉杆2 小时前
《数字信号处理》第5章-数字滤波器的基本结构
python·算法·机器学习·matlab·信号处理·数字信号处理·dsp
Fleshy数模2 小时前
从原理到实战:逻辑回归,机器学习的“Hello World”
算法·机器学习·逻辑回归
砚边数影2 小时前
逻辑回归实战(一):用户流失预测数据集设计,KingbaseES存储标签数据
java·人工智能·算法·机器学习·逻辑回归·线性回归·金仓数据库
郝学胜-神的一滴2 小时前
特征选择利器:深入理解SelectKBest与单变量特征选择
人工智能·python·程序人生·机器学习·数据分析·scikit-learn·sklearn
酩酊仙人2 小时前
.Net机器学习入门
人工智能·机器学习·.net
Chef_Chen2 小时前
数据科学每日总结--Day50--机器学习
人工智能·机器学习·支持向量机
张祥64228890411 小时前
误差理论与测量平差基础笔记十
笔记·算法·机器学习