机器学习期末速成

文章参考自B站机器学习期末速成课

本文仅作者个人复习使用

一、机器学习分类

聚类和分类的区别:

分类:一开始就知道有哪些类别

聚类:一开始不知道有哪些类别

损失函数:简单来说就是你预测出来的结果和真实值的差距。

0-1损失函数:一般做二分类问题

数据特征工程,相当于对原始数据进行一定的清理和提纯。

二、逻辑回归







sigmoid函数会让输出值在0-1之间


求参数,比如w和b,一般用梯度下降算法。

三、决策树










信息熵和信息增益描述数据的混乱程度

Gini系数则是描述数据的纯度

两者都是越小越好

四、集成学习算法

















五、支持向量机

两个类别边缘上的点叫支持向量

硬间隔:完全分类准确

软间隔:存在分类错误的情况






六、聚类









七、特征工程和指标












相关推荐
SHIPKING3931 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
巴伦是只猫1 小时前
【机器学习笔记Ⅰ】11 多项式回归
笔记·机器学习·回归
巴伦是只猫7 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手7 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
LCG元7 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
生态遥感监测笔记9 小时前
GEE利用已有土地利用数据选取样本点并进行分类
人工智能·算法·机器学习·分类·数据挖掘
刘海东刘海东10 小时前
结构型智能科技的关键可行性——信息型智能向结构型智能的转变(修改提纲)
人工智能·算法·机器学习
路溪非溪11 小时前
机器学习之线性回归
人工智能·机器学习·线性回归
Blossom.11813 小时前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn