机器学习期末速成

文章参考自B站机器学习期末速成课

本文仅作者个人复习使用

一、机器学习分类

聚类和分类的区别:

分类:一开始就知道有哪些类别

聚类:一开始不知道有哪些类别

损失函数:简单来说就是你预测出来的结果和真实值的差距。

0-1损失函数:一般做二分类问题

数据特征工程,相当于对原始数据进行一定的清理和提纯。

二、逻辑回归







sigmoid函数会让输出值在0-1之间


求参数,比如w和b,一般用梯度下降算法。

三、决策树










信息熵和信息增益描述数据的混乱程度

Gini系数则是描述数据的纯度

两者都是越小越好

四、集成学习算法

















五、支持向量机

两个类别边缘上的点叫支持向量

硬间隔:完全分类准确

软间隔:存在分类错误的情况






六、聚类









七、特征工程和指标












相关推荐
小鸡吃米…21 分钟前
机器学习的商业化变现
人工智能·机器学习
木非哲3 小时前
机器学习--随机森林--从一棵树的直觉到一片林的哲学
人工智能·随机森林·机器学习
A尘埃4 小时前
保险公司车险理赔欺诈检测(随机森林)
算法·随机森林·机器学习
小瑞瑞acd9 小时前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
民乐团扒谱机9 小时前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树
Σίσυφος190010 小时前
PCL法向量估计 之 RANSAC 平面估计法向量
算法·机器学习·平面
rcc862810 小时前
AI应用核心技能:从入门到精通的实战指南
人工智能·机器学习
霖大侠10 小时前
【无标题】
人工智能·深度学习·机器学习
B站_计算机毕业设计之家10 小时前
猫眼电影数据可视化与智能分析平台 | Python Flask框架 Echarts 推荐算法 爬虫 大数据 毕业设计源码
python·机器学习·信息可视化·flask·毕业设计·echarts·推荐算法
deephub11 小时前
机器学习特征工程:分类变量的数值化处理方法
python·机器学习·特征工程·分类变量