机器学习期末速成

文章参考自B站机器学习期末速成课

本文仅作者个人复习使用

一、机器学习分类

聚类和分类的区别:

分类:一开始就知道有哪些类别

聚类:一开始不知道有哪些类别

损失函数:简单来说就是你预测出来的结果和真实值的差距。

0-1损失函数:一般做二分类问题

数据特征工程,相当于对原始数据进行一定的清理和提纯。

二、逻辑回归







sigmoid函数会让输出值在0-1之间


求参数,比如w和b,一般用梯度下降算法。

三、决策树










信息熵和信息增益描述数据的混乱程度

Gini系数则是描述数据的纯度

两者都是越小越好

四、集成学习算法

















五、支持向量机

两个类别边缘上的点叫支持向量

硬间隔:完全分类准确

软间隔:存在分类错误的情况






六、聚类









七、特征工程和指标












相关推荐
Blossom.1183 小时前
量子计算与经典计算的融合与未来
人工智能·深度学习·机器学习·计算机视觉·量子计算
硅谷秋水4 小时前
MoLe-VLA:通过混合层实现的动态跳层视觉-语言-动作模型实现高效机器人操作
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
小李独爱秋5 小时前
机器学习开发全流程详解:从数据到部署的完整指南
人工智能·机器学习
Dovis(誓平步青云)5 小时前
深挖 DeepSeek 隐藏玩法·智能炼金术2.0版本
人工智能·深度学习·机器学习·数据挖掘·服务发现·智慧城市
ZTLJQ5 小时前
基于机器学习的三国时期诸葛亮北伐失败因素量化分析
人工智能·算法·机器学习
赵钰老师6 小时前
【Deepseek、ChatGPT】智能气候前沿:AI Agent结合机器学习与深度学习在全球气候变化驱动因素预测中的应用
人工智能·python·深度学习·机器学习·数据分析
nuise_6 小时前
李宏毅机器学习笔记06 | 鱼和熊掌可以兼得的机器学习 - 内容接宝可梦
人工智能·笔记·机器学习
databook7 小时前
线性模型与多分类问题:简单高效的力量
python·机器学习·scikit-learn
就决定是你啦!13 小时前
机器学习 第一章 绪论
人工智能·深度学习·机器学习
liruiqiang0516 小时前
循环神经网络 - 简单循环网络
人工智能·rnn·深度学习·神经网络·机器学习