Tablesaw封装Plot.ly实现数据可视化

上文介绍tablesaw的数据处理功能,本文向你展示其数据可视化功能,并通过几个常用图表示例进行说明。

Plot.ly包装

可视化是数据分析的重要组成部分,无论你只是"查看"新数据集还是验证机器学习算法的结果。Tablesaw是一个开源、高性能的Java"数据框架",也是一个用于转换数据以供分析的库。Tablesaw的新绘图框架提供了用Java为整个分析过程创建可视化的平台,从最早的探索到最后的展示。

该框架提供了Java版本的Plot.ly开源JavaScript可视化库封装。Plot.ly基于出色的D3(数据驱动文档)框架,Plot.ly非常好,事实上,它被广泛用于JavaScript以外的语言,如Python和R,虽然这些语言已经有了可靠的可视化选项。与其他语言一样,tablesaw提供的包装器,可以很容易地用纯Java构造图形,并用HTML和JavaScript呈现它们。

加入依赖

xml 复制代码
<dependency>
  <groupId>tech.tablesaw</groupId>
  <artifactId>tablesaw-core</artifactId>
  <version>0.43.1</version>
</dependency>
<!-- Tablesaw的绘图扩展,用于数据可视化 -->
<!-- https://mvnrepository.com/artifact/tech.tablesaw/tablesaw-jsplot -->
<dependency>
  <groupId>tech.tablesaw</groupId>
  <artifactId>tablesaw-jsplot</artifactId>
  <version>0.43.1</version>
</dependency>

时间序列图示例

java 复制代码
    Table bush = Table.read().csv("bush.csv");
    foxOnly = bush.where(bush.stringColumn("who").equalsIgnoreCase("fox"));
    Plot.show(
            TimeSeriesPlot.create("Fox approval ratings for George W. Bush", foxOnly,
                    "date", "approval")
    );

上面代码,首先加载数据,然后过滤数据。接着创建时间序列图,create()方法包括四个参数,分别为标题和数据,后面两个参数分别指定x轴和有轴数据列。当然我们也可以分为两步实现,首先创建图,然后调用 Plot.show()方法显示图形:

java 复制代码
    Figure foxPlot =
            TimeSeriesPlot.create("George W. Bush approval ratings", foxOnly,
                    "date", "approval");
    Plot.show(foxPlot);

散点图示例

  • 数据说明

    Month,Record,Robberies
    1966-01,1,41
    1966-02,2,39
    1966-03,3,50
    1966-04,4,40
    1966-05,5,43
    1966-06,6,38
    1966-07,7,44
    1966-08,8,35
    1966-09,9,39
    1966-10,10,35
    1966-11,11,29
    1966-12,12,49
    1967-01,13,50

第一列是年月,第二列是月份序号,第三列是抢劫案发生次数。我们希望采用折线图方式展现数据。为了更好定义图形,我们通过Layout 和 ScatterTrace两个类实现:

java 复制代码
Table robberies = Table.read().csv("boston-robberies.csv");

Layout layout =
        Layout.builder("Boston Robberies by month: Jan 1966-Oct 1975",
                "year", "robberies").build();

ScatterTrace trace =
        ScatterTrace.builder(robberies.numberColumn("Record"),
                robberies.numberColumn("Robberies"))
                .mode(ScatterTrace.Mode.LINE)
                .marker(Marker.builder().color("#3D9970").build())
                .fill(ScatterTrace.Fill.TO_NEXT_Y)
                .build();

Plot.show(new Figure(layout, trace));

Layout 类的构建器模式来创建一个 Layout 实例。传递给构建器的参数 "Boston Robberies by month: Jan 1966-Oct 1975" 作为图形的标题,"year""robberies" 这两个参数指定布局中坐标轴等相关元素(比如横坐标可能对应 year,纵坐标对应 robberies),最后调用 build() 方法来生成实际的 Layout 对象,该对象会定义可视化图形整体的布局结构。

使用 ScatterTrace 类的构建器模式创建 ScatterTrace 对象(用于定义散点图相关的配置和数据绑定)。在构建器的参数中,通过 robberies.numberColumn("Record")robberies.numberColumn("Robberies") 来指定散点图中数据对应的列(这里分别获取名为 "Record""Robberies" 两列的数据)。通过 .mode(ScatterTrace.Mode.LINE) 将散点图的展示模式设置为折线模式,意味着这些散点会用线段依次连接起来形成折线图。

.marker(Marker.builder().color("#3D9970").build()) 这部分用于设置散点(或者说折线图上数据点对应的标记)的样式,这里指定了颜色为 "#3D9970",是通过先创建一个 Marker 构建器对象,设置颜色属性后再生成实际的 Marker 对象传递给 ScatterTrace 构建器。.fill(ScatterTrace.Fill.TO_NEXT_Y) 是在折线和下一个 Y 轴坐标范围之间进行填充操作),然后调用 build() 方法完成 ScatterTrace 对象的构建,这个对象包含了散点图(折线模式下)具体的数据和样式等配置信息。

k线图示例

每个时间点展示开盘价、最高和最低价、收盘价。

java 复制代码
Table priceTable = Table.read().csv("ohlcdata.csv");
Plot.show(OHLCPlot.create("Prices", priceTable, "date", "open", "high", "low", "close"));

总结

本文介绍tablsesaw数据可视化功能,包括引入依赖,几个常用图表示例。更多内容可参考官方示例

相关推荐
阿杰学AI12 小时前
AI核心知识70——大语言模型之Context Engineering(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·数据处理·上下文工程
老吴学AI1 天前
第 2 节 | 从“呈现数据“到“驱动决策“:数据故事的力量
数据分析·数据可视化·excel教程·数据故事·职场技巧·业务洞察·报告编写
CodeCraft Studio2 天前
【案例分享】SciChart高性能数据可视化,助力某大型科研平台实现海量信号实时监测
信息可视化·数据分析·数据可视化·scichart·高性能图表引擎·科研平台
秋名山大前端3 天前
AI数字孪生本体智能技术方案
人工智能·aigc·数据可视化
CodeCraft Studio3 天前
【案例分享】TeeChart数据可视化图表库在高级分析软件中的应用
信息可视化·数据挖掘·数据分析·数据可视化·teechart·高级分析软件·.net图表库
Y_033 天前
SpringBoot+VUE3的图书管理系统
vue.js·spring boot·毕业设计·数据可视化
玄同7653 天前
MermaidTrace库:让Python运行时“自己画出”时序图
开发语言·人工智能·python·可视化·数据可视化·日志·异常
十三画者3 天前
【文献分享】OTMODE一种基于最优传输理论的框架,用于在单细胞多组学数据中识别差异特征
数据挖掘·数据分析·数据可视化
FIT2CLOUD飞致云7 天前
在线地图交互优化,查询组件选项值支持过滤条件,DataEase开源BI工具v2.10.19 LTS版本发布
开源·数据可视化·dataease·bi·数据大屏
千桐科技7 天前
qData 数据中台核心能力解析|第 02 期:从“有标准”到“能执行”,数据标准体系全景解析
数据处理·大数据平台·数据中台·逻辑模型·qdata·数据标准·标准登记