【经典论文阅读】Latent Diffusion Models(LDM)

Latent Diffusion Models

High-Resolution Image Synthesis with Latent Diffusion Models

摘要

动机:在有限的计算资源下进行扩散模型训练,同时保持质量和灵活性

引入跨注意力层,以卷积方式实现对一般条件输入(如文本或边界框)的响应以及高分辨率合成

1:引言

贡献

1:与纯粹基于 Transformer 的方法相比,在高维数据上的扩展更优雅

1.1 ==> 在压缩级别上工作,提供比之前工作更真实、更细致的重建

1.2 ==> 高效地应用于高分辨率的百万像素图像合成

2:与基于像素的扩散方法相比,在多种任务上(无条件图像生成、修复、随机超分辨率)取得了具有竞争力的性能,显著降低了计算成本和推理成本

3:与之前需要同时学习编码器/解码器架构和基于分数的先验的工作相比,无需对重建能力和生成能力进行复杂的权衡,确保了极高的重建忠实度,对潜在空间的正则化需求极低

4:对于密集条件约束任务(超分辨率、修复、语义合成),可以以卷积方式应用,并生成一致的超大图像

5:设计了基于跨注意力的通用条件机制,支持多模态训练

6:发布了预训练的潜在扩散模型和自编码模型

2:相关工作

1:generative models for image synthesis

2:diffusion probabilistic models(DM)

3:two-stage image synthesis

ARM:自回归模型

3:方法

autoencoding model(自编码模型) ==> learn a space that is perceptually equivalent to the image space

自编码模型的优点:

  • 低维空间采样

  • 利用从UNet继承的inductive bias,使得在处理具有空间结构的数据时**有效,无需激进的压缩

  • 通用压缩模型,其潜在空间可以用于训练多种生成模型

3.1:Perceptual Image Compression

autoencoder(自编码器)==> 通过 感知损失 + patch-based对抗目标 训练

  • 给定RGB空间的图像 x,编码器 e 把 x 编码到潜在表示 z,z = e(x)

  • 解码器 D 从潜在表示中重建图像 x^~,x^~ = D(z) = D(e(x))

    x的维度:

    z的维度:

  • 编码器下采样因子 f = H/h = W/w,讨论不同的下采样因子(2的指数倍)

避免潜在空间具有任意的高方差,采用了2种不同的正则化:

  • KL正则化:对学习到的潜在表示施加轻微的 KL 惩罚,使其趋向于标准正态分布(类似VAE)

  • VQ正则化:在解码器中使用向量量化层

3.2:Latent Diffusion Models

Diffusion Models

扩散模型:通过逐步对正态分布变量去噪,学习数据分布 p(x),对应学习固定长度为 T 的马尔可夫链的反向过程

图像合成模型,依赖于变分下界的重新加权变体

目标函数:

Generative Modeling of Latent Representations

通过训练的感知压缩模型(由 e 和 D 组成),可以访问一个高效的、低维的潜在空间

与高维像素空间相比,这个潜在空间更适合基于似然的生成模型,因为:

  • 专注于数据中重要的语义信息

  • 在一个更低维、计算上更高效的空间中进行训练

利用模型提供的与图像相关的归纳偏置:包括构建主要基于 2D 卷积层的 U-Net 的能力,并进一步将目标集中在感知上最相关的信息位上,使用重新加权的目标函数

目标函数修改为:

神经网络的主干:time-conditional UNet

zt 可以在训练期间通过 e 高效地获取

从 p(z) 的采样,可以通过 D 的一次前向传递,解码到图像空间

3.3:Conditioning Mechanisms

底层 U-Net 主干中加入跨注意力机制

为处理来自各种模态的 y,引入了一个特定领域的编码器 Tθ, 把 y 映射到一个中间表示 Tθ(y),维度为

跨注意力层的实现:

对于参数的解释:

framework

通过拼接(concatenation)或更通用的跨注意力机制(cross-attention mechanism)对潜在扩散模型 (LDMs) 进行条件化

基于图像条件对,目标函数修改为:

4:实验

4.1:感知压缩的权衡分析

实验内容:比较不同下采样因子 f(如 1, 2, 4, 8, 16, 32)对 LDM 模型性能的影响。下采样因子越大,压缩越强。

结果与分析

  • 小的下采样因子(如 f=1,2)导致训练进展缓慢,因为未能充分利用低维潜在空间的优势。

  • 过大的下采样因子(如 f=32)会导致信息损失,限制最终生成质量。

  • 最优权衡出现在 f=4 到 f=8 之间,既保证了高效的训练和推理,又提供了感知上忠实的生成结果。

结论中等强度的压缩(如 f=4 和 f=8)在效率和质量之间提供了最佳平衡。

4.2:无条件图像生成

实验内容:在多个数据集(CelebA-HQ, FFHQ, LSUN-Churches, LSUN-Bedrooms)上评估 LDM 的无条件生成能力,并通过 FID、Precision 和 Recall 指标与其他方法(如 GAN, DDPM)进行比较。

结果与分析

  • LDM 在大多数数据集上的 FID 指标优于现有扩散模型(例如 ADM)和 GAN 方法,尤其在 CelebA-HQ 数据集上达到 SOTA 性能。

  • 与现有基于像素空间的扩散方法相比,LDM 显著降低了推理和训练的计算成本。

结论:LDM 在无条件图像生成任务中表现出色,能够在更低的计算资源下实现更好的质量。

4.3:条件图像生成

实验内容

  • 通过引入交叉注意力机制(cross-attention),LDM 被扩展到条件生成任务(例如文本到图像生成)。

  • 使用 MS-COCO 数据集评估文本生成性能,并在语义地图条件下进行语义合成。

结果与分析

  • 在文本到图像生成上,LDM 超越了 DALL-E 和 CogView 等方法,FID 指标显著降低。

  • 在语义合成任务中,LDM 能够在低分辨率训练的基础上生成更高分辨率的图像(如 512×1024)。

结论:LDM 的交叉注意力机制极大地增强了条件生成的灵活性,尤其适用于文本到图像等复杂条件。

4.4:超分辨率任务

实验内容:在 ImageNet 数据集上进行 64×64→256×256 超分辨率任务,与 SR3 模型进行比较。

结果与分析

  • LDM 在 FID 指标上优于 SR3,但 IS 指标稍逊。

  • 用户研究表明,在感知一致性上,LDM 生成的高分辨率图像更受欢迎。

结论:LDM 能有效进行超分辨率生成,且具有更高的生成质量。

4.5:图像修复

实验内容:在 Places 数据集上进行图像修复,与 LaMa 等方法比较,评估填补遮挡区域的效果。

结果与分析

  • LDM 修复质量(FID)优于大多数现有方法,并通过用户研究证明更受人类偏好。

  • 高分辨率的修复任务(如 512×512)得益于潜在空间的特性。

结论:LDM 提供了一种通用的条件生成方法,在高质量修复任务中表现突出。

总结

性能提升:LDM 在多个任务上展现出较传统扩散模型显著的性能提升,尤其是在计算效率和感知质量之间实现了良好平衡。

通用性与灵活性:LDM 的架构设计(如交叉注意力机制)使其适应多种条件生成任务,例如文本、语义地图到图像生成。

计算优势:相较于像素空间的扩散模型,LDM 大幅减少了训练时间和推理计算需求,降低了硬件门槛。

相关推荐
小嗷犬2 小时前
【论文笔记】VisionZip: Longer is Better but Not Necessary in Vision Language Models
论文阅读·人工智能·语言模型·大模型·多模态
星夜Zn19 小时前
小语言模型综述(A Survey of Small Language Models)-全文中文翻译
论文阅读·人工智能·深度学习·语言模型·小语言模型
25 Hz1 天前
Mind 爱好者周刊 第6期 | 关于假设检验的贝叶斯因子(含R包)、高阶冥想期间的神经现象学、大脑中广泛的 β 网络、视觉和听觉审美具有不同的神经机制……
论文阅读·学习
chenjinxu20031 天前
Learning to (Learn at Test Time): RNNs with Expressive Hidden States 论文阅读
论文阅读
zenpluck1 天前
GS-SLAM论文阅读--RGBDS-SLAM
论文阅读
薛定谔的短耳猫2 天前
如何写出一篇好的论文?
论文阅读·毕业设计·论文笔记·毕设
行然梦实3 天前
毕设记录_论文阅读(动磁式音圈电机的开发与应用)_20241207
论文阅读·课程设计
体系结构论文研讨会3 天前
【论文阅读】对计算机体系结构研究的一点认识
论文阅读
HollowKnightZ3 天前
论文阅读笔记:Adaptive Rotated Convolution for Rotated Object Detection
论文阅读·笔记·目标检测