十一、数据库的设计规范
文章目录
-
- 十一、数据库的设计规范
-
- 一、为什么需要数据库设计
- 二、范式
-
- 1、范式简介
- 2、范式都包括哪些
- 3、键和相关属性的概念
- [4、第一范式(1st NF)](#4、第一范式(1st NF))
- [5、第二范式(2nd NF)](#5、第二范式(2nd NF))
- [6、第三范式(3rd NF)](#6、第三范式(3rd NF))
- 7.小结
- 三、反范式化
- 四、BCNF(巴斯范式)
- 五、第四范式
- 六、第五范式、域键范式
- 七、ER模型
- 八、数据表的设计原则
- 九、数据库对象编写建议
一、为什么需要数据库设计


二、范式
1、范式简介
在关系型数据库中,关于数据表设计的基本原则、规则就称为范式。可以理解为,一张数据表的设计结构需要满足的某种设计标准的级别 。要想设计一个结构合理的关系型数据库,必须满足一定的范式。
2、范式都包括哪些
目前关系型数据库有六种常见范式,按照范式级别,从低到高分别是:
第一范式(1NF)第二范式(2NF)第三范式(3NF)巴斯-科德范式(BCNF)第四范式(4NF)第五范式(5NF,又称完美范式)

满足第二范式就一定满足第一范式,属于包含关系
一般来说,在关系型数据库设计中,最高也就遵循到BCNF ,普遍还是3NF 。但也不绝对,有时候为了提高某些查询性能,我们还需要破坏范式规则,也就是反规范化。
3、键和相关属性的概念

举例 :这里有两个表
球员表(player) :球员编号 | 姓名 | 身份证号 | 年龄 | 球队编号
球队表(team) :球队编号 | 主教练 | 球队所在地
超键:对于球员表来说,超键就是包括球员编号或者身份证号的任意组合,比如(球员编号)(球员编号,姓名)(身份证号,年龄)等。候选键:就是最小的超键,对于球员表来说,候选键就是(球员编号)或者(身份证号)。主键:我们自己选定,也就是从候选键中选择一个,比如(球员编号)。外键:球员表中的球队编号。主属性 、 非主属性:在球员表中,主属性是(球员编号)(身份证号),其他的属性(姓名)(年龄)(球队编号)都是非主属性。
4、第一范式(1st NF)
字段不可再拆分,具有原子特性(最小粒度)
举例1:
假设一家公司要存储员工的姓名和联系方式。它创建一个如下表 :

该表不符合 1NF ,因为规则说"表的每个属性必须具有原子(单个)值",lisi和zhaoliu员工的emp_mobile 值违反了该规则。为了使表符合 1NF ,我们应该有如下表数据:

举例2:
user 表的设计不符合第一范式

其中,user_info字段为用户信息,可以进一步拆分成更小粒度的字段,不符合数据库设计对第一范式的要求。
将user_info拆分后如下:

举例3 :
属性的原子性是 主观的 。
例如,Employees关系中雇员姓名应当使用1个(fullname)、2个(firstname和lastname)还是3个(firstname、middlename和lastname)属性表示呢?答案取决于应用程序。
如果应用程序需要分别处理雇员的姓名部分(如:用于搜索目的),则有必要把它们分开。否则,不需要。
表1:

表2:

地址被再细粒度拆分
5、第二范式(2nd NF)
第二范式要求,在满足第一范式的基础上,还要满足数据表里的每一条数据记录,都是可唯一标识的。而且所有非主键字段,都必须完全依赖主键,不能只依赖主键的一部分。如果知道主键的所有属性的值,就可以检索到任何元组(行)的任何属性的任何值。(要求中的主键,其实可以拓展替换为候选键)。
表中字段不存在除额外的依赖关系
举例1:
成绩表 (学号,课程号,成绩)关系中,(学号,课程号)可以决定成绩,但是学号不能决定成绩,课
程号也不能决定成绩,所以"(学号,课程号)→成绩"就是 完全依赖关系 。
举例2:
比赛表 player_game ,里面包含球员编号、姓名、年龄、比赛编号、比赛时间和比赛场地等属性,这里候选键和主键都为(球员编号,比赛编号),我们可以通过候选键(或主键)来决定如下的关系:
(球员编号, 比赛编号) → (姓名, 年龄, 比赛时间, 比赛场地,得分)
但是这个数据表不满足第二范式,因为数据表中的字段之间还存在着如下的对应关系:
(球员编号) → (姓名,年龄)
(比赛编号) → (比赛时间, 比赛场地)
对于非主属性来说,并非完全依赖候选键。这样会产生怎样的问题呢?
数据冗余:如果一个球员可以参加 m 场比赛,那么球员的姓名和年龄就重复了 m-1 次。一个比赛也可能会有 n 个球员参加,比赛的时间和地点就重复了 n-1 次。插入异常:如果我们想要添加一场新的比赛,但是这时还没有确定参加的球员都有谁,那么就没法插入。删除异常:如果我要删除某个球员编号,如果没有单独保存比赛表的话,就会同时把比赛信息删除掉。更新异常:如果我们调整了某个比赛的时间,那么数据表中所有这个比赛的时间都需要进行调整,否则就会出现一场比赛时间不同的情况。
为了避免出现上述的情况,我们可以把球员比赛表设计为下面的三张表。

这样的话,每张数据表都符合第二范式,也就避免了异常情况的发生。
1NF告诉我们字段属性需要是原子性的,而2NF告诉我们一张表就是一个独立的对象,一张表只表达一个意思。
举例3 :
定义了一个名为 Orders 的关系,表示订单和订单行的信息:

违反了第二范式,因为有非主键属性仅依赖于候选键(或主键)的一部分。例如,可以仅通过orderid找到订单的 orderdate,以及 customerid 和 companyname,而没有必要再去使用productid。
修改:
Orders表和OrderDetails表如下,此时符合第二范式。

6、第三范式(3rd NF)
第三范式是在第二范式的基础上,确保数据表中的每一个非主键字段都和主键字段直接相关,也就是说,要求数据表中的所有非主键字段不能依赖于其他非主键字段 。(即,不能存在非主属性A依赖于非主属性B,非主属性B依赖于主键C的情况,即存在"A→B→C"的决定关系)通俗地讲,该规则的意思是所有非主键属性 之间不能有依赖关系,必须 相互独立。
这里的主键可以拓展为候选键。
举例1:
部门信息表 :每个部门有部门编号(dept_id)、部门名称、部门简介等信息。
员工信息表 :每个员工有员工编号、姓名、部门编号。列出部门编号后就不能再将部门名称、部门简介
等与部门有关的信息再加入员工信息表中。如果不存在部门信息表,则根据第三范式(3NF)也应该构建它,否则就会有大量的数据冗余。
举例2:

商品类别名称依赖于商品类别编号,不符合第三范式。
修改:
表1:符合第三范式的 商品类别表 的设计

表2:符合第三范式的 商品表 的设计

商品表goods通过商品类别id字段(category_id)与商品类别表goods_category进行关联。
举例3 :
球员player表 :球员编号、姓名、球队名称和球队主教练。现在,我们把属性之间的依赖关系画出来,如下图所示:

你能看到球员编号决定了球队名称,同时球队名称决定了球队主教练,非主属性球队主教练就会传递依赖于球员编号,因此不符合 3NF 的要求。
如果要达到 3NF 的要求,需要把数据表拆成下面这样:

举例4:
修改第二范式中的举例3。
此时的Orders关系包含 orderid、orderdate、customerid 和 companyname 属性,主键定义为 orderid。
customerid 和companyname均依赖于主键------orderid。例如,你需要通过orderid主键来查找代表订单中客户的customerid,同样,你需要通过 orderid 主键查找订单中客户的公司名称(companyname)。然而, customerid和companyname也是互相依靠的。为满足第三范式,可以改写如下:

符合3NF后的数据模型通俗地讲,2NF和3NF通常以这句话概括:"每个非键属性依赖于键,依赖于整个键,并且除了键别无他物"。
7.小结
关于数据表的设计,有三个范式要遵循。
(1)第一范式(1NF),确保每列保持原子性
数据库的每一列都是不可分割的原子数据项,不可再分的最小数据单元,而不能是集合、数组、记录等非原子数据项。
(2)第二范式(2NF),确保每列都和主键完全依赖
尤其在复合主键的情况下,非主键部分不应该依赖于部分主键。
(3)第三范式(3NF)确保每列都和主键列 直接相关,而不是间接相关
范式的优点:数据的标准化有助于消除数据库中的数据冗余,第三范式(3NF)通常被认为在性能、扩展性和数据完整性方面达到了最好的平衡
范式的缺点:范式的使用,可能降低查询的效率 。因为范式等级越高,设计出来的数据表就越多、越精细,数据的冗余度就越低,进行数据查询的时候就可能需要关联多张表 ,这不但代价昂贵,也可能使一些索引策略无效。
范式只是提出了设计的标准,实际上设计数据表时,未必一定要符合这些标准。开发中,我们会出现为了性能和读取效率违反范式化的原则,通过增加少量的冗余或重复的数据来提高数据库的读性能,减少关联查询,join表的次数,实现空间换取时间的目的。因此在实际的设计过程中要理论结合实际,灵活运用。
范式本身没有优劣之分,只有适用场景不同。没有完美的设计,只有合适的设计,我们在数据表的设计中,还需要根据需求将范式和反范式混合使用。
三、反范式化
根据业务,适当的冗余存储字段,减少多表查询的压力
1、概述
规范化 vs 性能
- 为满足某种商业目标 ,
数据库性能比规范化数据库更重要- 在数据规范化的同时 , 要综合考虑
数据库的性能- 通过在给定的表中添加额外的字段,以大量
减少需要从中搜索信息所需的时间- 通过在给定的表中插入计算列,以
方便查询
2、应用举例
举例1:
员工的信息存储在employees 表 中,部门信息存储在departments 表 中。通过 employees 表中的
department_id字段与 departments 表建立关联关系。如果要查询一个员工所在部门的名称:
sql
select employee_id,department_name
from employees e join departments d
on e.department_id = d.department_id;
123
如果经常需要进行这个操作,连接查询就会浪费很多时间。可以在 employees 表中增加一个冗余字段department_name,这样就不用每次都进行连接操作了。
举例2:
反范式化的 goods商品信息表 设计如下:

举例3:
有 2 个表,分别是 商品流水表(atguigu.trans )和 商品信息表(atguigu.goodsinfo) 。
商品流水表里有 400 万条流水记录,商品信息表里有 2000 条商品记录。
商品流水表:

商品信息表:

新的商品流水表如下所示:

举例4:
课程评论表 class_comment,对应的字段名称及含义如下:

学生表 student ,对应的字段名称及含义如下:

在实际应用中,我们在显示课程评论的时候,通常会显示这个学生的昵称,而不是学生 ID,因此当我们想要查询某个课程的前 1000 条评论时,需要关联 class_comment 和 student这两张表来进行查询。
实验数据:模拟两张百万量级的数据表
为了更好地进行 SQL 优化实验,我们需要给学生表和课程评论表随机模拟出百万量级的数据。
我们可以通过存储过程来实现模拟数据。
反范式优化实验对比
如果我们想要查询课程 ID 为 10001 的前 1000 条评论,需要写成下面这样:
sql
SELECT p.comment_text, p.comment_time, stu.stu_name
FROM class_comment AS p LEFT JOIN student AS stu
ON p.stu_id = stu.stu_id
WHERE p.class_id = 10001
ORDER BY p.comment_id DESC
LIMIT 1000;
123456
运行结果(1000 条数据行):

运行时长为0.395 秒,对于网站的响应来说,这已经很慢了,用户体验会非常差。
如果我们想要提升查询的效率,可以允许适当的数据冗余,也就是在商品评论表中增加用户昵称字段,在 class_comment 数据表的基础上增加 stu_name 字段,就得到了 class_comment2 数据表。
这样一来,只需单表查询就可以得到数据集结果:
sql
SELECT comment_text, comment_time, stu_name
FROM class_comment2
WHERE class_id = 10001
ORDER BY class_id DESC LIMIT 1000;
1234
运行结果(1000 条数据):

优化之后只需要扫描一次聚集索引即可,运行时间为 0.039 秒,查询时间是之前的 1/10。
你能看到,在数据量大的情况下,查询效率会有显著的提升。
3、反范式的新问题
- 存储
空间变大了 - 一个表中字段做了修改,另一个表中冗余的字段也需要做同步修改,否则
数据不一致 - 若采用存储过程来支持数据的更新、删除等额外操作,如果更新频繁,会非常
消耗系统资源 - 在
数据量小的情况下,反范式不能体现性能的优势,可能还会让数据库的设计更加 复杂
4、反范式的适用场景
当冗余信息有价值或者能 大幅度提高查询效率 的时候,我们才会采取反范式的优化。
- 增加冗余字段的建议
- 历史快照、历史数据的需要
在现实生活中,我们经常需要一些冗余信息,比如订单中的收货人信息,包括姓名、电话和地址等。每次发生的订单收货信息都属于历史快照,需要进行保存,但用户可以随时修改自己的信息,这时保存这些冗余信息是非常有必要的。
反范式优化也常用在数据仓库的设计中,因为数据仓库通常存储历史数据,对增删改的实时性要求不强,对历史数据的分析需求强。这时适当允许数据的冗余度,更方便进行数据分析。
四、BCNF(巴斯范式)
人们在3NF的基础上进行了改进,提出了巴斯范式(BCNF),也叫做巴斯-科德范式(Boyce-Codd Normal Form)。BCNF被认为没有新的设计规范加入,只是对第三范式中设计规范要求更强,使得数据库冗余度更小。
所以,称为是修正的第三范式,或扩充的第三范式,BCNF不被称为第四范式。
若一个关系达到了第三范式,并且它只有一个候选键,或者它的每个候选键都是单属性,则该关系自然达到BC范式。
一般来说,一个数据库设计符合3NF或BCNF就可以了。
1、案例

在这个表中,一个仓库只有一个管理员,同时一个管理员也只管理一个仓库。我们先来梳理下这些属性之间的依赖关系。
仓库名决定了管理员,管理员也决定了仓库名,同时(仓库名,物品名)的属性集合可以决定数量这个
属性。这样,我们就可以找到数据表的候选键。
候选键:是(管理员,物品名)和(仓库名,物品名),然后我们从候选键中选择一个作为 主键 ,比如(仓库名,物品名)。主属性:包含在任一候选键中的属性,也就是仓库名,管理员和物品名。非主属性:数量这个属性。
2、是否符合三范式
如何判断一张表的范式呢?我们需要根据范式的等级,从低到高来进行判断。
- 首先,数据表每个属性都是
原子性的,符合1NF的要求; - 其次,数据表中
非主属性"数量"都与候选键全部依赖,(仓库名,物品名)决定数量,(管理员,物品名)决定数量。因此,数据表符合`` 2NF` 的要求; - 最后,数据表中的非主属性,
不传递依赖于候选键。因此符合3NF的要求。
3、存在的问题
既然数据表已经符合了 3NF 的要求,是不是就不存在问题了呢?我们来看下面的情况:
- 增加一个仓库,但是还没有存放任何物品。根据数据表实体完整性的要求,主键不能有空值,因此会出现
插入异常; - 如果仓库更换了管理员,我们就可能会
修改数据表中的多条记录; - 如果仓库里的商品都卖空了,那么此时仓库名称和相应的管理员名称也会随之被删除。
你能看到,即便数据表符合 3NF 的要求,同样可能存在插入,更新和删除数据的异常情况。
4、问题解决
首先我们需要确认造成异常的原因:
主属性仓库名对于候选键(管理员,物品名)是部分依赖的关系,这样就有可能导致上面的异常情况。
因此引入BCNF,它在 3NF 的基础上消除了主属性对候选键的部分依赖或者传递依赖关系。
- 如果在关系R中,U为主键,A属性是主键的一个属性,若存在A->Y,Y为主属性,则该关系不属于BCNF。
根据 BCNF 的要求,我们需要把仓库管理关系 warehouse_keeper 表拆分成下面这样:
仓库表 :(仓库名,管理员)
库存表 :(仓库名,物品名,数量)
这样就不存在主属性对于候选键的部分依赖或传递依赖,上面数据表的设计就符合 BCNF。
再举例:
有一个学生导师表 ,其中包含字段:学生ID,专业,导师,专业GPA,这其中学生ID和专业是联合主
键。

这个表的设计满足三范式,但是这里存在另一个依赖关系,"专业"依赖于"导师",也就是说每个导师只
做一个专业方面的导师,只要知道了是哪个导师,我们自然就知道是哪个专业的了。
所以这个表的部分主键Major依赖于非主键属性Advisor,那么我们可以进行以下的调整,拆分成2个表:
学生导师表 :

导师表:

五、第四范式

举例1 :
职工表(职工编号,职工孩子姓名,职工选修课程)。
在这个表中,同一个职工可能会有多个职工孩子姓名。
同样,同一个职工也可能会有多个职工选修课程,即这里存在着多值事实,不符合第四范式。
如果要符合第四范式,只需要将上表分为两个表,使它们只有一个多值事实,例如: 职工表一(职工编
号,职工孩子姓名), 职工表二 (职工编号,职工选修课程),两个表都只有一个多值事实,所以符合第四
范式。
举例2:
比如我们建立课程、教师、教材的模型。我们规定,每门课程有对应的一组教师,每门课程也有对应的一组教材,一门课程使用的教材和教师没有关系。
我们建立的关系表如下:
课程ID,教师ID,教材ID;这三列作为联合主键。
为了表述方便,我们用Name代替ID,这样更容易看懂:

这个表除了主键,就没有其他字段了,所以肯定满足BC范式,但是却存在 多值依赖 导致的异常。
假如我们下学期想采用一本新的英版高数教材,但是还没确定具体哪个老师来教,那么我们就无法在这
个表中维护Course高数和Book英版高数教材的的关系。
解决办法是我们把这个多值依赖的表拆解成2个表,分别建立关系。这是我们拆分后的表:

以及

六、第五范式、域键范式
除了第四范式外,我们还有更高级的第五范式(又称完美范式)和域键范式(DKNF)。
在满足第四范式(4NF)的基础上,消除不是由候选键所蕴含的连接依赖。如果关系模式R中的每一个连接依赖均由R的候选键所隐含,则称此关系模式符合第五范式。
函数依赖是多值依赖的一种特殊的情况,而多值依赖实际上是连接依赖的一种特殊情况。但连接依赖不像函数依赖和多值依赖可以由 语义直接导出 ,而是在 关系连接运算 时才反映出来。存在连接依赖的关系模式仍可能遇到数据冗余及插入、修改、删除异常等问题。
第五范式处理的是 无损连接问题 ,这个范式基本 没有实际意义 ,因为无损连接很少出现,而且难以察觉。
而域键范式试图定义一个 终极范式 ,该范式考虑所有的依赖和约束类型,但是实用价值也是最小的,只存在理论研究中。
七、ER模型
数据库设计是牵一发而动全身的。那有没有什么办法提前看到数掘库的全貌呢?比如需要哪些数据表、数据表中应该有哪些字段,数据表与数据表之间有什么关系、通过什么字段进行连接,等等。这样我们才能进行整体的梳理和设计。
其实,ER模型就是一个这样的工具。ER模型也叫作实体关系模型 ,是用来描述现实生活中客观存在的事物、事物的属性,以及事物之间关系的一种数据模型。在开发基于数据库的信息系统的设计阶段,通常使用ER模型来描述信息需求和信息特性,帮助我们理清业务逻辑,从而设计出优秀的数据库。
ER 模型中有三个要素,分别是实体、属性和关系。
实体,可以看做是数据对象,往往对应于现实生活中的真实存在的个体。在 ER 模型中,用矩形来表示。实体分为两类,分别是强实体和弱实体。强实体是指不依赖于其他实体的实体;弱实体是指对另一个实体有很强的依赖关系的实体。属性,则是指实体的特性。比如超市的地址、联系电话、员工数等。在 ER 模型中用椭圆形来表示。关系,则是指实体之间的联系。比如超市把商品卖给顾客,就是一种超市与顾客之间的联系。在 ER 模型中用菱形来表示。
注意 :实体和属性不容易区分。这里提供一个原则:我们要从系统整体的角度出发去看,可以独立存在的是实体,不可再分的是属性。也就是说,属性不能包含其他属性。
1、关系的类型
在 ER 模型的 3 个要素中,关系又可以分为 3 种类型,分别是一对一、一对多、多对多。
一对一:指实体之间的关系是一一对应的,比如个人与身份证信息之间的关系就是一对一的关系。一个人只能有一个身份证信息,一个身份证信息也只属于一个人。一对多:指一边的实体通过关系,可以对应多个另外一边的实体。相反,另外一边的实体通过这个关
系,则只能对应唯一的一边的实体。比如说,我们新建一个班级表,而每个班级都有多个学生,每个学
生则对应一个班级,班级对学生就是一对多的关系。多对多:指关系两边的实体都可以通过关系对应多个对方的实体。比如在进货模块中,供货商与超市之间的关系就是多对多的关系,一个供货商可以给多个超市供货,一个超市也可以从多个供货商那里采购商品。再比如一个选课表,有许多科目,每个科目有很多学生选,而每个学生又可以选择多个科目,这就是多对多的关系。
2、建模分析
ER 模型看起来比较麻烦,但是对我们把控项目整体非常重要。如果你只是开发一个小应用,或许简单设计几个表够用了,一旦要设计有一定规模的应用,在项目的初始阶段,建立完整的 ER 模型就非常关键了。
开发应用项目的实质,其实就是 建模 。
我们设计的案例是 电商业务 ,由于电商业务太过庞大且复杂,所以我们做了业务简化,比如针对SKU(StockKeepingUnit,库存量单位)和SPU(Standard Product Unit,标准化产品单元)的含义上,我们直接使用了SKU,并没有提及SPU的概念。本次电商业务设计总共有8个实体,如下所示。
- 地址实体
- 用户实体
- 购物车实体
- 评论实体
- 商品实体
- 商品分类实体
- 订单实体
- 订单详情实体

其中, 用户 和 商品分类 是强实体,因为它们不需要依赖其他任何实体。而其他属于弱实体,因为它们虽然都可以独立存在,但是它们都依赖用户这个实体,因此都是弱实体。知道了这些要素,我们就可以
给电商业务创建 ER 模型了,如图:

在这个图中,地址和用户之间的添加关系,是一对多的关系,而商品和商品详情示一对1的关系,商品和
订单是多对多的关系。 这个 ER 模型,包括了 8个实体之间的 8种关系。
(1)用户可以在电商平台添加多个地址;
(2)用户只能拥有一个购物车;
(3)用户可以生成多个订单;
(4)用户可以发表多条评论;
(5)一件商品可以有多条评论;
(6)每一个商品分类包含多种商品;
(7)一个订单可以包含多个商品,一个商品可以在多个订单里。
(8)订单中又包含多个订单详情,因为一个订单中可能包含不同种类的商品
3、ER 模型的细化
有了这个 ER 模型,我们就可以从整体上 理解 电商的业务了。刚刚的 ER 模型展示了电商业务的框架,但是只包括了订单,地址,用户,购物车,评论,商品,商品分类和订单详情这八个实体,以及它们之间的关系,还不能对应到具体的表,以及表与表之间的关联。我们需要把 属性加上 ,用 椭圆 来表示,这样我们得到的 ER 模型就更加完整了。
因此,我们需要进一步去设计一下这个 ER 模型的各个局部,也就是细化下电商的具体业务流程,然后把它们综合到一起,形成一个完整的 ER 模型。这样可以帮助我们理清数据库的设计思路。
接下来,我们再分析一下各个实体都有哪些属性,如下所示。
(1)
地址实体包括用户编号、省、市、地区、收件人、联系电话、是否是默认地址。(2)
用户实体包括用户编号、用户名称、昵称、用户密码、手机号、邮箱、头像、用户级别。(3)
购物车实体包括购物车编号、用户编号、商品编号、商品数量、图片文件url。(4)
订单实体包括订单编号、收货人、收件人电话、总金额、用户编号、付款方式、送货地址、下单时间。(5)
订单详情实体包括订单详情编号、订单编号、商品名称、商品编号、商品数量。(6)
商品实体包括商品编号、价格、商品名称、分类编号、是否销售,规格、颜色。(7)
评论实体包括评论id、评论内容、评论时间、用户编号、商品编号(8)
商品分类实体包括类别编号、类别名称、父类别编号
这样细分之后,我们就可以重新设计电商业务了,ER 模型如图:

4、ER 模型图转换成数据表

其实,任何一个基于数据库的应用项目,都可以通过这种 先建立 ER 模型 ,再 转换成数据表 的方式,完成数据库的设计工作。创建 ER 模型不是目的,目的是把业务逻辑梳理清楚,设计出优秀的数据库。我建议你不是为了建模而建模,要利用创建 ER 模型的过程来整理思路,这样创建 ER 模型才有意义。

八、数据表的设计原则
综合以上内容,总结出数据表设计的一般原则:"三少一多"
-
数据表的个数越少越好
-
数据表中的字段个数越少越好
字段个数越多,数据余的可能性越大。设置字段个数少的前提是各个字段相互独立,而不是某个字段的取值可以由其他字段计算出来。当然字段个数少是相对的,我们通常会在数据冗余 和检索效率中进行平衡。
-
数据表中联合主键的字段个数越少越好
设置主键是为了确定唯一性,当一个字段无法确定唯一性的时候,就需要采用联合主键的方式(也就是用多个字段来定义一个主键)。联合主键中的字段越多,占用的索引空间越大,不仅会加大理解难度,还会增加运行时间和索引空间,因此联合主键的字段个数越少越好。
-
使用主键和外键越多越好
这里的外键指的是一对一,一对多的关系,不是外键约束
数据库的设计实际上就是定义各种表,以及各种字段之间的关系。这些关系越多,证明这些实体之间的冗余度越低,利用度越高 。这样做的好处在于不仅保证了数据表之间的独立性,还能提升相互之间的关联使用率。
"三少一多"原则的核心就是简单可复用。简单指的是用更少的表、更少的字段、更少的联合主键字段来完成数据表的设计。可复用则是通过主键、外键的使用来增强数据表之间的复用率。因为一个主键可以理解是一张表的代表。键设计得越多,证明它们之间的利用率越高。
注意:这个原则并不是绝对的,有时候我们需要牺牲数据的冗余度来换取数据处理的效率。
九、数据库对象编写建议
1、 关于库
- 【强制】库的名称必须控制在32个字符以内,只能使用英文字母、数字和下划线,建议以英文字母开头。
- 【强制】库名中英文
一律小写,不同单词采用下划线分割。须见名知意。 - 【强制】库的名称格式:业务系统名称_子系统名。
- 【强制】库名禁止使用关键字(如type,order等)。
- 【强制】创建数据库时必须
显式指定字符集,并且字符集只能是utf8或者utf8mb4。创建数据库SQL举例:CREATE DATABASE crm_fundDEFAULT CHARACTER SET 'utf8'; - 【建议】对于程序连接数据库账号,遵循
权限最小原则使用数据库账号只能在一个DB下使用,不准跨库。程序使用的账号原则上不准有drop权限。 - 【建议】临时库以
tmp_为前缀,并以日期为后缀;备份库以bak_为前缀,并以日期为后缀。
2、关于表、列
- 【强制】表和列的名称必须控制在32个字符以内,表名只能使用英文字母、数字和下划线,建议以
英文字母开头。 - 【强制】
表名、列名一律小写,不同单词采用下划线分割。须见名知意。 - 【强制】表名要求有模块名强相关,同一模块的表名尽量使用
统一前缀。比如:crm_fund_item - 【强制】创建表时必须
显式指定字符集为utf8或utf8mb4。 - 【强制】表名、列名
禁止使用关键字(如type,order等)。 - 【强制】创建表时必须
显式指定表存储引擎类型。如无特殊需求,一律为InnoDB。 - 【强制】建表必须有comment。
- 【强制】字段命名应尽可能使用表达实际含义的英文单词或
缩写。如:公司 ID,不要使用corporation_id, 而用corp_id 即可。 - 【强制】布尔值类型的字段命名为
is_描述。如member表上表示是否为enabled的会员的字段命
名为 is_enabled。 - 【强制】
禁止在数据库中存储图片、文件等大的二进制数据通常文件很大,短时间内造成数据量快速增长,数据库进行数据库读取时,通常会进行大量的随机IO操作,文件很大时,IO操作很耗时。通常存储于文件服务器,数据库只存储文件地址信息。 - 【建议】建表时关于主键:
表必须有主键
(1)强制要求主键为id,类型为int或bigint,且为auto_increment 建议使用unsigned无符号型。
(2)标识表里每一行主体的字段不要设为主键,建议设为其他字段如user_id,order_id等,并建立unique key索引。因为如果设为主键且主键值为随机插入,则会导致innodb内部页分裂和大量随机I/O,性能下降。 - 【建议】核心表(如用户表)必须有行数据的
创建时间字段(create_time)和最后更新时间字段 (update_time),便于查问题。 - 【建议】表中所有字段尽量都是
NOT NULL属性,业务可以根据需要定义DEFAULT值。 因为使用
NULL值会存在每一行都会占用额外存储空间、数据迁移容易出错、聚合函数计算结果偏差等问
题。 - 【建议】所有存储相同数据的
列名和列类型必须一致(一般作为关联列,如果查询时关联列类型
不一致会自动进行数据类型隐式转换,会造成列上的索引失效,导致查询效率降低)。 - 【建议】中间表(或临时表)用于保留中间结果集,名称以
tmp_开头。
备份表用于备份或抓取源表快照,名称以bak_开头。中间表和备份表定期清理。
【示范】一个较为规范的建表语句:
sql
CREATE TABLE user_info (
`id` int unsigned NOT NULL AUTO_INCREMENT COMMENT '自增主键',
`user_id` bigint(11) NOT NULL COMMENT '用户id',
`username` varchar(45) NOT NULL COMMENT '真实姓名',
`email` varchar(30) NOT NULL COMMENT '用户邮箱',
`nickname` varchar(45) NOT NULL COMMENT '昵称',
`birthday` date NOT NULL COMMENT '生日',
`sex` tinyint(4) DEFAULT '0' COMMENT '性别',
`short_introduce` varchar(150) DEFAULT NULL COMMENT '一句话介绍自己,最多50个汉字',
`user_resume` varchar(300) NOT NULL COMMENT '用户提交的简历存放地址',
`user_register_ip` int NOT NULL COMMENT '用户注册时的源ip',
`create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP COMMENT '修改时间',
`user_review_status` tinyint NOT NULL COMMENT '用户资料审核状态,1为通过,2为审核中,3为未通过,4为还未提交审核',
PRIMARY KEY (`id`),
UNIQUE KEY `uniq_user_id` (`user_id`),
KEY `idx_username`(`username`),
KEY `idx_create_time_status`(`create_time`,`user_review_status`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='网站用户基本信息'
1234567891011121314151617181920
3、关于索引
- 【强制】InnoDB表必须主键为id int/bigint auto_increment,且主键值
禁止被更新。 - 【强制】InnoDB和MyISAM存储引擎表,索引类型必须为
BTREE。 - 【建议】主键的名称以
pk_开头,唯一键以uni_或uk_开头,普通索引以idx_开头,一律
使用小写格式,以字段的名称或缩写作为后缀。 - 【建议】多单词组成的columnname,取前几个单词首字母,加末单词组成column_name。如:
sample 表 member_id 上的索引:idx_sample_mid。 - 【建议】单个表上的索引个数
不能超过6个。 - 【建议】在建立索引时,多考虑建立
联合索引,并把区分度最高的字段放在最前面。 - 【建议】在多表 JOIN 的SQL里,保证被驱动表的连接列上有索引,这样JOIN 执行效率最高。
- 【建议】建表或加索引时,保证表里互相不存在
冗余索引。 比如:如果表里已经存在key(a,b),则key(a)为冗余索引,需要删除。
4、SQL编写
- 【强制】程序端SELECT语句必须指定具体字段名称,
禁止写成 *。 - 【建议】程序端insert语句指定具体字段名称,不要写成INSERT INTO t1 VALUES(...)。
- 【建议】除静态表或小表(100行以内),DML语句必须有WHERE条件,且使用索引查找。
- 【建议】INSERT INTO...VALUES(XX),(XX),(XX)... 这里XX的值不要超过5000个。 值过多虽然上线很快,但会引起主从同步延迟。
- 【建议】SELECT语句不要使用UNION,推荐使用UNION ALL,并且UNION子句个数限制在5个以内。
- 【建议】线上环境,多表 JOIN 不要超过5个表。
- 【建议】减少使用ORDER BY,和业务沟通能不排序就不排序,或将排序放到程序端去做。ORDER
BY、GROUP BY、DISTINCT 这些语句较为耗费CPU,数据库的CPU资源是极其宝贵的。 - 【建议】包含了ORDER BY、GROUP BY、DISTINCT 这些查询的语句,WHERE 条件过滤出来的结果集请保持在1000行以内,否则SQL会很慢。
- 【建议】对单表的多次alter操作必须合并为一次
对于超过100W行的大表进行alter table,必须经过DBA审核,并在业务低峰期执行,多个alter需整合在一起。 因为alter table会产生表锁,期间阻塞对于该表的所有写入,对于业务可能会产生极大影响。 - 【建议】批量操作数据时,需要控制事务处理间隔时间,进行必要的sleep。
- 【建议】事务里包含SQL不超过5个。
因为过长的事务会导致锁数据较久,MySQL内部缓存、连接消耗过多等问题。 - 【建议】事务里更新语句尽量基于主键或UNIQUE KEY,如UPDATE... WHERE id=XX;否则会产生间隙锁,内部扩大锁定范围,导致系统性能下降,产生死锁。