Kafka-Streams初识

一、Kafka-Streams是什么?

Kafka Streams是一个用于构建应用程序和微服务的客户端库,其中输入和输出数据存储在Kafka集群中,它结合了在客户端编写和部署标准Java和Scala应用程序的简单性与Kafka的服务器端集群技术的优势。

它是编写实时应用程序和微服务的最简单方法。

二、Kafka-Streams优点

1、弹性、高度可扩展、容错

2、可以部署到容器、虚拟机、裸机、云

3、同样适用于小型、中型和大型用例

4、与Kafka安全完全集成

5、编写标准的Java和Scala应用程序

6、一次处理语义

7、不需要单独的处理集群

8、支持在Mac、Linux、Windows上开发

三、WordCount代码示例

java 复制代码
public class WordCountApplication {

   public static void main(final String[] args) throws Exception {
       Properties props = new Properties();
       props.put(StreamsConfig.APPLICATION_ID_CONFIG, "wordcount-application");
       props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka-broker1:9092");
       props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
       props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());

       StreamsBuilder builder = new StreamsBuilder();
       KStream<String, String> textLines = builder.stream("TextLinesTopic");
       KTable<String, Long> wordCounts = textLines
           .flatMapValues(textLine -> Arrays.asList(textLine.toLowerCase().split("\\W+")))
           .groupBy((key, word) -> word)
           .count(Materialized.<String, Long, KeyValueStore<Bytes, byte[]>>as("counts-store"));
       wordCounts.toStream().to("WordsWithCountsTopic", Produced.with(Serdes.String(), Serdes.Long()));

       KafkaStreams streams = new KafkaStreams(builder.build(), props);
       streams.start();
   }

}

它实现了WordCount算法,该算法从输入文本中计算单词,且可以对无限的、无界的数据流进行操作。与有界变体类似,它是一种跟踪和更新单词计数的有状态算法。但是,由于它必须假设潜在的无界输入数据,它将定期输出其当前状态和结果,同时继续处理更多数据,因为它无法知道何时处理了"所有"输入数据。

下面我们就实际来跑下这个程序

四、运行官方示例程序

1、创建名为streams-plaintext-input的输入topic

kafka-topics --create \

--bootstrap-server cdh1:9092 \

--replication-factor 1 \

--partitions 1 \

--topic streams-plaintext-input

2、创建名为streams-wordcount-output的输出topic

kafka-topics --create \

--bootstrap-server cdh1:9092 \

--replication-factor 1 \

--partitions 1 \

--topic streams-wordcount-output \

--config cleanup.policy=compact

3、启动WordCountDemo

kafka-run-class org.apache.kafka.streams.examples.wordcount.WordCountDemo

以上是官方的WordCountDemo启动,它源码中指定的bootstrap.servers是localhost:9092,如果是集群环境会报错

我们这里把WordCountDemo放到自己的maven项目中进行修改并运行。

WordCountDemo将从输入topic:streams-plaintext-input读取,对每个读取的消息执行WordCount算法的计算,并将其当前结果连续写入输出topic:streams-wordcount-output。因此,除了日志条目之外,不会有任何STDOUT输出,因为结果会在Kafka中写回。

4、测试观察

下面我们启动控制台生产者和消费者来测试下

kafka-console-producer --topic streams-plaintext-input --broker-list cdh1:9092,cdh2:9092,cdh3:9092
kafka-console-consumer --bootstrap-server cdh1:9092 \

--topic streams-wordcount-output \

--from-beginning \

--property print.key=true \

--property print.value=true \

--property key.deserializer=org.apache.kafka.common.serialization.StringDeserializer \

--property value.deserializer=org.apache.kafka.common.serialization.LongDeserializer

下面我们在producer端的控制台输入单词:

aaa bbb ccc ddd

我们再看看consumer端的情况:

我们继续输入

aaa ccc xxx

我们再看看consumer端的情况:

37那个可以忽略,因为crt每30秒回输入下回车

我们看到每次只会统计当次输入单词在历史数据中的count

相关推荐
培培说证1 小时前
2026 中专大数据技术专业考证书门槛低的有哪些?
大数据
小北方城市网2 小时前
第1课:架构设计核心认知|从0建立架构思维(架构系列入门课)
大数据·网络·数据结构·python·架构·数据库架构
收获不止数据库2 小时前
黄仁勋2026CES演讲复盘:旧世界,裂开了!
大数据·数据库·人工智能·职场和发展
老胡全房源系统2 小时前
房产中介管理系统哪一款性价比高
大数据·人工智能·房产经纪人培训
黄焖鸡能干四碗2 小时前
信息安全网络安全评估报告(WORD)
大数据·网络·人工智能·安全·web安全·制造·需求分析
汤姆yu2 小时前
基于python大数据的协同过滤音乐推荐系统
大数据·开发语言·python
Data_agent2 小时前
Cssbuy 模式淘宝 / 1688 代购系统南美市场搭建指南
大数据·python
川西胖墩墩3 小时前
团队协作泳道图制作工具 PC中文免费
大数据·论文阅读·人工智能·架构·流程图
云启数智YQ3 小时前
企业进行大数据迁移的注意事项有些什么?
大数据·大文件传输·跨国文件传输·内外网文件传输·大文件传输软件