三维测量与建模笔记 - 6.2 结构光三维成像简介

简介

双目视觉系统中,找到左右图像中的同名点是很困难的。

即便是经过了极线校正,也存在很多问题比如高光等造成无匹配。对于结构光方案来说,找到同名点的过程会相对简单些。

结构光方案中,会增加一个投射器,将编码后的光束打到物体上,由于投射的图案本身是预知的,可以起到辅助定位的作用。

结构光方案有多种,摄像机数量上看有单目和双目的,编码方式上看有线激光、格雷码编码、伪随机吗等方案。

结构光重建有很多应用,其成本较低,精度高,能满足很多工业场景。

线结构光

线结构光是通过向物体投射出一条按照一定方向移动的线结构光,根据拍摄得到的线结构光,解算出对应点的三维信息。

上图中,激光发射器和相机之间相对位姿是已知的(通过标定实现)。

对于某个特定位置,当投射器向物体投射出一条线结构光后,经过特殊的图像处理,得到该位置下除去背景后只保留拍摄到的这条红色的线。如果物体表面凹凸不平,相机拍摄到的这条线不是笔直的。

如上图,对于相机拍摄到的像平面上红线上的某一点, 其对应的3D点的位置假设为(x,y,z),则这个点一定处于投射器所射出的光平面上。在相机的坐标系下,通过相似三角形关系,我们可以得到:

由于(x,y,z)也在光平面上,因此满足方程Ax+By+Cz+D=0,通过代换x和y到这个方程中,我们可以得到:

因此只要知道光平面的参数(A,B,C,D),以及相机上的点坐标,就能解算出z值。

下图是一个实际线结构光扫描后重建的物体表面的例子:

此外,还有面结构光方案,关于结构光相关内容网上有很多资料。后续有涉及到更细节的地方会补充相关笔记。

相关推荐
Niuguangshuo5 小时前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火6 小时前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
wfeqhfxz25887826 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
芝士爱知识a6 小时前
2026年AI面试软件推荐
人工智能·面试·职场和发展·大模型·ai教育·考公·智蛙面试
Li emily6 小时前
解决港股实时行情数据 API 接入难题
人工智能·python·fastapi
Aaron15886 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
J_Xiong01176 小时前
【Agents篇】04:Agent 的推理能力——思维链与自我反思
人工智能·ai agent·推理
星爷AG I7 小时前
9-26 主动视觉(AGI基础理论)
人工智能·计算机视觉·agi
爱吃泡芙的小白白7 小时前
CNN参数量计算全解析:从基础公式到前沿优化
人工智能·神经网络·cnn·参数量
拐爷7 小时前
vibe‑coding 九阳神功之喂:把链接喂成“本地知识”,AI 才能稳定干活(API / 设计 / 报道 / 截图)
人工智能