三维测量与建模笔记 - 6.2 结构光三维成像简介

简介

双目视觉系统中,找到左右图像中的同名点是很困难的。

即便是经过了极线校正,也存在很多问题比如高光等造成无匹配。对于结构光方案来说,找到同名点的过程会相对简单些。

结构光方案中,会增加一个投射器,将编码后的光束打到物体上,由于投射的图案本身是预知的,可以起到辅助定位的作用。

结构光方案有多种,摄像机数量上看有单目和双目的,编码方式上看有线激光、格雷码编码、伪随机吗等方案。

结构光重建有很多应用,其成本较低,精度高,能满足很多工业场景。

线结构光

线结构光是通过向物体投射出一条按照一定方向移动的线结构光,根据拍摄得到的线结构光,解算出对应点的三维信息。

上图中,激光发射器和相机之间相对位姿是已知的(通过标定实现)。

对于某个特定位置,当投射器向物体投射出一条线结构光后,经过特殊的图像处理,得到该位置下除去背景后只保留拍摄到的这条红色的线。如果物体表面凹凸不平,相机拍摄到的这条线不是笔直的。

如上图,对于相机拍摄到的像平面上红线上的某一点, 其对应的3D点的位置假设为(x,y,z),则这个点一定处于投射器所射出的光平面上。在相机的坐标系下,通过相似三角形关系,我们可以得到:

由于(x,y,z)也在光平面上,因此满足方程Ax+By+Cz+D=0,通过代换x和y到这个方程中,我们可以得到:

因此只要知道光平面的参数(A,B,C,D),以及相机上的点坐标,就能解算出z值。

下图是一个实际线结构光扫描后重建的物体表面的例子:

此外,还有面结构光方案,关于结构光相关内容网上有很多资料。后续有涉及到更细节的地方会补充相关笔记。

相关推荐
Norvyn_78 分钟前
LeetCode|Day18|20. 有效的括号|Python刷题笔记
笔记·python·leetcode
AndrewHZ15 分钟前
【图像处理基石】如何入门色彩评估?
图像处理·人工智能·深度学习·色彩科学·hvs·色彩评估·颜色工程
TomatoSCI15 分钟前
聚类的可视化选择:PCA / t-SNE丨TomatoSCI分析日记
人工智能·机器学习
大咖分享课17 分钟前
深度剖析:最新发布的ChatGPT Agent 技术架构与应用场景
人工智能·openai·智能助手·ai代理·chatgpt agent·自主任务执行
lucky_lyovo28 分钟前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn32 分钟前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy36 分钟前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
静心问道1 小时前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域1 小时前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源
亲持红叶1 小时前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数