【OCR】——端到端文字识别GOT-OCR2.0不香嘛?

代码:https://github.com/Ucas-HaoranWei/GOT-OCR2.0?tab=readme-ov-file

在线demo:https://huggingface.co/spaces/stepfun-ai/GOT_official_online_demo

0.前言

最早做ocr的时候,就在想如何能做一个端到端的模型,就不用先检测再识别,最起码只用只用维护一个模型。现在他来了。而且鲁棒性,适用面都很强。但是部署。。。

1.效果实测

可以通过在线demo实测,效果强的可怕。

2.论文解读

2.1 主要贡献

  • 实现了一种端到端的OCR模型。
  • 多样的输入,多样的输出,还支持交互式。
  • 在输入端,该模型支持切片和整页样式中常用的场景和文档样式图像。在输出端,GOT 可以通过简单的提示生成普通或格式化的结果(markdown/tikz/smiles/kern)。此外,该模型具有交互式OCR特征,即由坐标或颜色引导的区域级识别。此外,我们还将动态分辨率和多页OCR技术应用于GOT,以获得更好的实用性

2.2 网络结构


encoder :编码器结构是 VitDet基本版本,参数约为 80M,它将 1024×1024×3 输入图像转移到 256×1024 图像token,然后,这些图像标记通过 1024×768 线性层投影到语言模型。
qwen-0.5B:大语言模型

2.3 训练细节

第一阶段:encoder训练

受 LVLM 设计的启发,解码器可以通过训练有素的语言模型进行初始化。然而,我们没有为 OCR-2.0 模型找到合适的预训练编码器,所以我们必须自己训练一个。我们希望新的OCR编码器能够很好地处理各种输入形状(切片和整个页面)中常用的场景和文档文本识别。

编码器结构是 VitDet基本版本,再接一个小的decoder OPT-125M

第二阶段:微调大预言decoder

在视觉编码器的预训练步骤之后,我们将其连接到更强大的语言模型,以构建 GOT 的最终架构。在这里,我们采用 Qwen-0.5B作为解码器,因为它的参数数量相对较少,同时结合了多种语言的先验知识。连接器的尺寸(即线性嵌入层)调整为 1024×1024,以与 Qwen-0.5B 的输入通道对齐。因此,GOT 具有无缝的编码器-解码器范式,总共有大约 580M 的参数,这在计算上更友好,更容易部署在具有 4G 内存的消费级 GPU 上。编码器的高压缩率(1024×1024 光像素到 256 个图像标记)为解码器节省了大量标记空间以生成新的标记。同时,解码器的令人满意的解码上下文长度(我们使用大约 8K max-length)确保 GOT 可以有效地输出密集场景下的 OCR 结果

第三阶段:prompt微调

作为高交互特征,细粒度OCR是由空间坐标或颜色控制的区域级视觉感知。用户可以在问题提示中添加框坐标(框引导的 OCR)或颜色文本(颜色引导的 OCR),以请求感兴趣区域 (RoI) 内的识别,避免其他不相关字符的输出

2.4 实验结果

  1. open-source Fox benchmark上的结果
  2. 论文中效果图

3. other

  • 核心就是一个encoder+decoder模式的ocr,这和最开始的end2end ocr的核心是一样的,只是以前是用cnn+transformer,或者transformer+transformer,现在encoder,decoder都用了更大的模型,更多的数据。
相关推荐
私人珍藏库1 天前
[Windows] Umi-OCR 开源批量文字识别 支持图片,文档,二维码,截图等
ocr
hwshea1 天前
Tesseract OCR使用
ocr
OCR_API4 天前
ocr智能票据识别系统|自动化票据识别集成方案
运维·自动化·ocr
山川而川-R5 天前
PaddlePaddle的OCR模型转onnx-转rknn模型_笔记4
笔记·ocr·paddle
大模型之路5 天前
DeepSeek-R1 如何通过知识蒸馏将推理能力传递给 Qwen
人工智能·知识蒸馏·qwen·deepseek·deepseek-r1
OCR_API8 天前
深度学习算法:ocr营业执照识别可提取字段、接口识别
ocr
uncle_ll8 天前
基于 llama-index与Qwen大模型实现RAG
大模型·llm·llama·qwen·rag
深圳市快瞳科技有限公司8 天前
成本哪个更低更好用?分析对比大模型OCR、传统OCR和深度学习OCR
人工智能·深度学习·ocr
小马过河R14 天前
OCR与多模态大模型的关系
人工智能·机器学习·语言模型·nlp·ocr
沉到海底去吧Go14 天前
【自动化办公】批量图片PDF自定义指定多个区域识别重命名,批量识别铁路货物运单区域内容改名,基于WPF和飞桨ocr深度学习模型的解决方案
ocr·paddlepaddle·自动化办公pdf批量操作·pdf电子发票批量提取解决方案·pdf电子发票提取明细到表格·批量获取pdf多区域内容表格·pdf订单详情多区域提取表格