李宏毅机器学习-局部最小值与鞍点

一、Optimization Fails because ......

1. 问题

在optimization时,training的loss不会再下降,但是我们对loss并不满意。不管我们怎么更新参数,loss都不会掉下来。

2. 原因:critical point(gradient为0)

a) 局部最小点(local minima)

b) 鞍点(saddle point)

二、Tayler Series Approximation(到底时local minima 还是saddle point)

1. 给定一组参数θ′,在θ′附近的L(θ)

2. 公式解释:第1项 L(θ′),也就是说当θ跟θ′很近的时候,L(θ)应该跟L(θ′)很靠近的。

第2项是〖(θ-θ')〗^Tg,其中g是一个矢量,也就是我们的gradient,它可以来弥补θ'跟θ之间的差距。

第3项跟Hessian矩阵有关。第3项是(θ-θ' )^T H(θ-θ'),它会再弥补θ跟θ′的差距。H里面放的是参数对L的二次微分。

  • 如果我们走到了一个critical point,也意味着gradient为0,所以绿色这一项就可以取消掉了,只剩下红色这一项。
  • 通过第3项来判断在θ′附近的error surface,到底长什么样,也就可以判断θ′是属于局部最小值点还是鞍点。

如下图所示,我们把(θ-θ')用v这个向量来表示。对所有的v而言,v^THv都大于0,那这种矩阵叫做正定矩阵(positive definite),它所有的特征值(eigen value)都是正的。所以我们计算出一个Hessian,我们只需要去看Hessian的eigen value,就可以得出结论。
a)如果矩阵的所有特征值(eigen value)都是正的,那就是局部最小值点(local minima)。
b)如果矩阵的所有特征值(eigen value)都是负的,那就是局部最大值点(local maxima)。
c)如果矩阵的所有特征值(eigen value)有正有负,那就是鞍点(saddle point)。

  • 如何判断是哪个和gradient 和Hessian有关系
  • 如果是saddle point的话,H可以告诉我们优化方向

总结

其实局部最小点(local minima)并没有那么常见,大多数情况下,卡在一个鞍点(saddle point)。

相关推荐
arbboter6 分钟前
【AI插件开发】Notepad++ AI插件开发1.0发布和使用说明
人工智能·大模型·notepad++·ai助手·ai插件·aicoder·notepad++插件开发
BB_CC_DD7 分钟前
四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
深度学习·算法·聚类
IT_Octopus18 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
果冻人工智能23 分钟前
AI军备竞赛:我们是不是正在造一个无法控制的神?
人工智能
暴龙胡乱写博客29 分钟前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉
程序员辣条36 分钟前
深度测评 RAG 应用评估框架:指标最全面的 RAGas
人工智能·程序员
curdcv_po37 分钟前
字节跳动Trae:一款革命性的免费AI编程工具完全评测
人工智能·trae
程序员辣条38 分钟前
为什么需要提示词工程?什么是提示词工程(prompt engineering)?为什么需要提示词工程?收藏我这一篇就够了!
人工智能·程序员·产品经理
孔令飞42 分钟前
Go:终于有了处理未定义字段的实用方案
人工智能·云原生·go
清流君1 小时前
【MySQL】数据库 Navicat 可视化工具与 MySQL 命令行基本操作
数据库·人工智能·笔记·mysql·ue5·数字孪生