李宏毅机器学习-局部最小值与鞍点

一、Optimization Fails because ......

1. 问题

在optimization时,training的loss不会再下降,但是我们对loss并不满意。不管我们怎么更新参数,loss都不会掉下来。

2. 原因:critical point(gradient为0)

a) 局部最小点(local minima)

b) 鞍点(saddle point)

二、Tayler Series Approximation(到底时local minima 还是saddle point)

1. 给定一组参数θ′,在θ′附近的L(θ)

2. 公式解释:第1项 L(θ′),也就是说当θ跟θ′很近的时候,L(θ)应该跟L(θ′)很靠近的。

第2项是〖(θ-θ')〗^Tg,其中g是一个矢量,也就是我们的gradient,它可以来弥补θ'跟θ之间的差距。

第3项跟Hessian矩阵有关。第3项是(θ-θ' )^T H(θ-θ'),它会再弥补θ跟θ′的差距。H里面放的是参数对L的二次微分。

  • 如果我们走到了一个critical point,也意味着gradient为0,所以绿色这一项就可以取消掉了,只剩下红色这一项。
  • 通过第3项来判断在θ′附近的error surface,到底长什么样,也就可以判断θ′是属于局部最小值点还是鞍点。

如下图所示,我们把(θ-θ')用v这个向量来表示。对所有的v而言,v^THv都大于0,那这种矩阵叫做正定矩阵(positive definite),它所有的特征值(eigen value)都是正的。所以我们计算出一个Hessian,我们只需要去看Hessian的eigen value,就可以得出结论。
a)如果矩阵的所有特征值(eigen value)都是正的,那就是局部最小值点(local minima)。
b)如果矩阵的所有特征值(eigen value)都是负的,那就是局部最大值点(local maxima)。
c)如果矩阵的所有特征值(eigen value)有正有负,那就是鞍点(saddle point)。

  • 如何判断是哪个和gradient 和Hessian有关系
  • 如果是saddle point的话,H可以告诉我们优化方向

总结

其实局部最小点(local minima)并没有那么常见,大多数情况下,卡在一个鞍点(saddle point)。

相关推荐
BullSmall36 分钟前
汽车HIL测试:电子开发的关键验证环节
人工智能·机器学习·自动驾驶
woshihonghonga37 分钟前
停止Conda开机自动运行方法
linux·人工智能·conda
海洲探索-Hydrovo3 小时前
TTP Aether X 天通透传模块丨国产自主可控大数据双向通讯定位模组
网络·人工智能·科技·算法·信息与通信
触想工业平板电脑一体机3 小时前
【触想智能】工业安卓一体机在人工智能领域上的市场应用分析
android·人工智能·智能电视
墨染天姬4 小时前
【AI】数学基础之矩阵
人工智能·线性代数·矩阵
2401_841495646 小时前
【计算机视觉】基于复杂环境下的车牌识别
人工智能·python·算法·计算机视觉·去噪·车牌识别·字符识别
zhangjipinggom6 小时前
multi-head attention 多头注意力实现细节
深度学习
倔强青铜三6 小时前
苦练Python第66天:文件操作终极武器!shutil模块完全指南
人工智能·python·面试
倔强青铜三6 小时前
苦练Python第65天:CPU密集型任务救星!多进程multiprocessing模块实战解析,攻破GIL限制!
人工智能·python·面试
强哥之神7 小时前
浅谈目前主流的LLM软件技术栈:Kubernetes + Ray + PyTorch + vLLM 的协同架构
人工智能·语言模型·自然语言处理·transformer·openai·ray