李宏毅机器学习-局部最小值与鞍点

一、Optimization Fails because ......

1. 问题

在optimization时,training的loss不会再下降,但是我们对loss并不满意。不管我们怎么更新参数,loss都不会掉下来。

2. 原因:critical point(gradient为0)

a) 局部最小点(local minima)

b) 鞍点(saddle point)

二、Tayler Series Approximation(到底时local minima 还是saddle point)

1. 给定一组参数θ′,在θ′附近的L(θ)

2. 公式解释:第1项 L(θ′),也就是说当θ跟θ′很近的时候,L(θ)应该跟L(θ′)很靠近的。

第2项是〖(θ-θ')〗^Tg,其中g是一个矢量,也就是我们的gradient,它可以来弥补θ'跟θ之间的差距。

第3项跟Hessian矩阵有关。第3项是(θ-θ' )^T H(θ-θ'),它会再弥补θ跟θ′的差距。H里面放的是参数对L的二次微分。

  • 如果我们走到了一个critical point,也意味着gradient为0,所以绿色这一项就可以取消掉了,只剩下红色这一项。
  • 通过第3项来判断在θ′附近的error surface,到底长什么样,也就可以判断θ′是属于局部最小值点还是鞍点。

如下图所示,我们把(θ-θ')用v这个向量来表示。对所有的v而言,v^THv都大于0,那这种矩阵叫做正定矩阵(positive definite),它所有的特征值(eigen value)都是正的。所以我们计算出一个Hessian,我们只需要去看Hessian的eigen value,就可以得出结论。
a)如果矩阵的所有特征值(eigen value)都是正的,那就是局部最小值点(local minima)。
b)如果矩阵的所有特征值(eigen value)都是负的,那就是局部最大值点(local maxima)。
c)如果矩阵的所有特征值(eigen value)有正有负,那就是鞍点(saddle point)。

  • 如何判断是哪个和gradient 和Hessian有关系
  • 如果是saddle point的话,H可以告诉我们优化方向

总结

其实局部最小点(local minima)并没有那么常见,大多数情况下,卡在一个鞍点(saddle point)。

相关推荐
AI科技星3 分钟前
引力与电磁的动力学耦合:变化磁场产生引力场与电场方程的第一性原理推导、验证与统一性意义
服务器·人工智能·科技·线性代数·算法·机器学习·生活
hkNaruto4 分钟前
【AI】AI学习笔记:OpenAI Tools完全指南:从原理到实战入门
人工智能·笔记·学习
狮子座明仔7 分钟前
MiMo-V2-Flash 深度解读:小米 309B 开源 MoE 模型如何用 15B 激活参数吊打 671B 巨头?
人工智能·语言模型·自然语言处理
xwill*8 分钟前
wandb的使用方法,以navrl为例
开发语言·python·深度学习
紧固件研究社8 分钟前
从标准件到复杂异形件,紧固件设备如何赋能制造升级
人工智能·制造·紧固件
木头左9 分钟前
贝叶斯深度学习在指数期权风险价值VaR估计中的实现与应用
人工智能·深度学习
反向跟单策略9 分钟前
期货反向跟单—高频换人能够提高跟单效率?
大数据·人工智能·学习·数据分析·区块链
哎吆我呸10 分钟前
Android studio 安装Claude Code GUI 插件报错无法找到Node.js解决方案
人工智能
咕噜企业分发小米11 分钟前
独立IP服务器有哪些常见的应用场景?
人工智能·阿里云·云计算
测试者家园16 分钟前
AI 智能体如何构建模拟真实用户行为的复杂负载场景?
人工智能·压力测试·性能测试·智能体·用户行为·智能化测试·软件开发和测试