李宏毅机器学习-局部最小值与鞍点

一、Optimization Fails because ......

1. 问题

在optimization时,training的loss不会再下降,但是我们对loss并不满意。不管我们怎么更新参数,loss都不会掉下来。

2. 原因:critical point(gradient为0)

a) 局部最小点(local minima)

b) 鞍点(saddle point)

二、Tayler Series Approximation(到底时local minima 还是saddle point)

1. 给定一组参数θ′,在θ′附近的L(θ)

2. 公式解释:第1项 L(θ′),也就是说当θ跟θ′很近的时候,L(θ)应该跟L(θ′)很靠近的。

第2项是〖(θ-θ')〗^Tg,其中g是一个矢量,也就是我们的gradient,它可以来弥补θ'跟θ之间的差距。

第3项跟Hessian矩阵有关。第3项是(θ-θ' )^T H(θ-θ'),它会再弥补θ跟θ′的差距。H里面放的是参数对L的二次微分。

  • 如果我们走到了一个critical point,也意味着gradient为0,所以绿色这一项就可以取消掉了,只剩下红色这一项。
  • 通过第3项来判断在θ′附近的error surface,到底长什么样,也就可以判断θ′是属于局部最小值点还是鞍点。

如下图所示,我们把(θ-θ')用v这个向量来表示。对所有的v而言,v^THv都大于0,那这种矩阵叫做正定矩阵(positive definite),它所有的特征值(eigen value)都是正的。所以我们计算出一个Hessian,我们只需要去看Hessian的eigen value,就可以得出结论。
a)如果矩阵的所有特征值(eigen value)都是正的,那就是局部最小值点(local minima)。
b)如果矩阵的所有特征值(eigen value)都是负的,那就是局部最大值点(local maxima)。
c)如果矩阵的所有特征值(eigen value)有正有负,那就是鞍点(saddle point)。

  • 如何判断是哪个和gradient 和Hessian有关系
  • 如果是saddle point的话,H可以告诉我们优化方向

总结

其实局部最小点(local minima)并没有那么常见,大多数情况下,卡在一个鞍点(saddle point)。

相关推荐
l1t2 分钟前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华1 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu2 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师3 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr8284 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡5 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成5 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃5 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)5 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑
Godspeed Zhao5 小时前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶