对一系列数据聚合后进行diff,是一种常见的数据分析需求。例如,我们可能会需要将每个月的财务支出流水数据进行分类汇总,再对不同月的汇总数据进行比较,看看哪些分类支出变多了,哪些变少了。此次我将使用SQL和pandas来实现上面所述需求,具体来说,使用SQL实现数据聚合功能,使用pandas对聚合后的数据进行diff。
虽说单独使用pandas也足够实现这个需求,但是考虑到类似的流水数据很多都是存在DB里的,检索数据时聚合一下也就顺手的事,因此聚合数据就交给SQL来做了。况且SQL相比pandas性能更好,泛用性也更广,如果不是用SQL来diff数据没有比较直观的方案,完全使用SQL来实现这个需求更加符合我的心意。本文中使用的数据库是python内置的sqlite3。
Talk is cheap,直接上代码,解释和注意事项都在注释里面了:
python
#!/usr/bin/python3
from collections import namedtuple
import logging
import os
import sqlite3
import pandas as pd
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
DB_NAME = "expenses_aggregate_diff.db"
# 流水记录,总共四个字段:部门、类型、月份和金额,一般来说月份这个字段应该细化为时间戳,这里为了简化就用月份了
Record = namedtuple('Record', ['department', 'type', 'month', 'amount'])
# 插一些样例数据
def insert_example_records():
records = [
Record('A', 'R&D', '202406', 1000),
Record('A', 'Operating', '202406', 2000),
Record('A', 'R&D', '202406', 4000),
Record('A', 'R&D', '202406', 5000),
Record('B', 'Operating', '202406', 2000),
Record('B', 'Sales', '202406', 8000),
Record('A', 'Operating', '202407', 7000),
Record('B', 'Operating', '202407', 4000),
Record('B', 'Sales', '202407', 2000),
Record('B', 'R&D', '202407', 1000),
Record('B', 'R&D', '202407', 9000),
]
logging.info(f'save {len(records)} records to db')
conn = sqlite3.connect(DB_NAME)
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS records (
id INTEGER PRIMARY KEY AUTOINCREMENT,
department TEXT NOT NULL,
type TEXT NOT NULL,
month TEXT NOT NULL,
amount INT NOT NULL
)
''')
for record in records:
cursor.execute('''
INSERT INTO records (department, type, month, amount)
VALUES (?, ?, ?, ?)
''', (record.department, record.type, record.month, record.amount))
conn.commit()
conn.close()
# 获得某个月份聚合后的流水数据,以group_by_fields为分组字段,可接受的参数是部门、类型或两者的组合,对金额进行聚合
def get_aggregated_amount_by_month(month: str, group_by_fields: list[str]) -> pd.DataFrame:
conn = sqlite3.connect(DB_NAME)
cursor = conn.cursor()
# 为了简便,就不对group_by_fields做校验了,这种代码绝不能上产线的 XD
group_by_clause = ", ".join(group_by_fields)
sql = f"""
SELECT {group_by_clause}, SUM(amount) FROM records WHERE month = ? GROUP BY {group_by_clause}
"""
cursor.execute(sql, (month,))
rows = cursor.fetchall()
conn.close()
logging.info(f'get {len(rows)} records for {month}')
return pd.DataFrame(rows, columns=group_by_fields + ['amount'])
# diff某两个月聚合后的数据
def diff_aggregated_data(month0: str, month1: str, group_by_fields: list[str]) -> pd.DataFrame:
# 聚合
df0 = get_aggregated_amount_by_month(month0, group_by_fields)
df1 = get_aggregated_amount_by_month(month1, group_by_fields)
# 合并到一个表里面,合并方式为outer join,缺失项会被填充为NaN
df_diff = pd.merge(df0, df1, on=group_by_fields, how='outer', suffixes=(month0, month1))
# 将NaN填充为0
df_diff = df_diff.fillna(0)
# 对数据进行diff
df_diff['amount_diff'] = df_diff['amount' + month1] - df_diff['amount' + month0]
# 只保留diff后的数据
df_diff = df_diff[group_by_fields + ['amount_diff']]
return df_diff
if __name__ == '__main__':
if not os.path.exists(DB_NAME):
insert_example_records()
group_by_fields = ['department', 'type']
month0 = '202406'
month1 = '202407'
print(diff_aggregated_data(month0, month1, group_by_fields))
输出为:
department type amount_diff
0 A Operating 5000.0
1 A R&D -10000.0
2 B Operating 2000.0
3 B R&D 10000.0
4 B Sales -6000.0