从〇开始深度学习(番外)——快速配置云服务器

从〇开始深度学习(番外)------快速配置云服务器

文章目录

写在前面

《从〇开始深度学习(番外)》系列主要记录一些细碎知识点和技能,与主线并不冲突。如果主线笔记中用得到番外篇的知识或技能,会在文中贴出链接,为此不必担心遗漏知识。

本篇的内容主要是快速配置一台云服务器,主要目的是把本地训练挪至服务器,从而加快我们训练与预测的速度。

服务器平台:AutoDL算力云。

1.准备工作

在算力市场(AutoDL算力云 | 弹性、好用、省钱。租GPU就上AutoDL)选择合适的服务器:

然后选择Pytorch版本:

注意

  • 在选卡的时候注意最高CUDA版本和自己需要用的是否一致;
  • 如果在创建镜像时,选择Miniconda,则需要进行额外。我们的需求只需要管理一个环境,无需用conda;
  • 创建后Pytorch服务器就已经配好,无需自己配置;

2.配置PyCharm

2.1.连接服务器

用Pycharm打开ultralytics-main,打开设置,找到项目:

在Pycharm中打开设置,找到Python解释器:

添加解释器,选择SSH:

界面如下:

在控制台复制登录指令和密码:

复制代码
ssh -p 5xxx6 root@connect.bjb1.seetacloud.com
bugaosunimima

其中,主机为connect.bjb1.seetacloud.com,端口为5xxx9,用户名为root

密码也从控制台复制即可。点击下一步:

然后再点下一步:

**进入第四步时,不要着急创建!先不点击下一步!**回到控制台,打开JupyterLab,在autodl-tmp文件夹下创建存放工程的文件夹:

最好与本地路径一样,防止自己忘记:

回到Pycharm,选择系统解释器,而非Virtualenv环境,进行如下配置:

点击创建,Pycharm就会自动上传。

2.2.配置部署服务器

然后进行如下配置:

2.3.配置Jupyter

创建一个Jupyter文件:

右上角配置Jupyter服务器:

修改命令行实参:

复制代码
notebook
--no-browser
--allow-root
--port 5xxx6

应用后即可。

至此Pycharm配置完成。

3.安装项目依赖(如需要)

仅抛砖引玉。打开JupyterLab,进入存放项目的文件夹。在此文件夹下,打开终端,输入:

复制代码
pip install scikit-learn

在服务器安装项目依赖不需要换源。

注:这里是进入项目文件夹之后下载的,实际上并不一定需要进入项目文件夹再下载。

4.Pycharm里的便捷服务

4.1.使用终端

打开终端,选择服务器:

输入命令:

复制代码
cd autodl-tmp/PyTorch/test1

4.2.从服务器上下载文件到本地

如何将服务器上的内容下载到本地呢?点击浏览远程主机:

会弹出界面。找到相应文件夹,右键下载到本地即可:

相关推荐
ujainu4 小时前
CANN仓库中的AIGC能效-性能协同优化:昇腾AI软件栈如何实现“既要又要还要”的工程奇迹
人工智能·aigc
RisunJan4 小时前
Linux命令-lpq(查看打印队列状态)
linux·运维·服务器
山君爱摸鱼4 小时前
Linux-服务进程
linux·运维·服务器
阿乐艾官4 小时前
【linux文件系统重要目录及命令解释】
linux·运维·服务器
2501_944934734 小时前
大专大数据管理与应用专业,怎么自学数据治理相关知识?
人工智能
芷栀夏5 小时前
CANN ops-math:从矩阵运算到数值计算的全维度硬件适配与效率提升实践
人工智能·神经网络·线性代数·矩阵·cann
肾透侧视攻城狮5 小时前
《Transformer模型PyTorch实现全攻略:架构拆解、代码示例与优化技巧》
深度学习·transformer·构建transformer模型·定义多头注意力模块·定义位置前馈网络·构建解/编码器模块·训练transformer模型
Yuer20255 小时前
为什么说在真正的合规体系里,“智能”是最不重要的指标之一。
人工智能·edca os·可控ai
一切尽在,你来5 小时前
1.4 LangChain 1.2.7 核心架构概览
人工智能·langchain·ai编程
爱吃大芒果5 小时前
CANN ops-nn 算子开发指南:NPU 端神经网络计算加速实战
人工智能·深度学习·神经网络