从〇开始深度学习(番外)——快速配置云服务器

从〇开始深度学习(番外)------快速配置云服务器

文章目录

写在前面

《从〇开始深度学习(番外)》系列主要记录一些细碎知识点和技能,与主线并不冲突。如果主线笔记中用得到番外篇的知识或技能,会在文中贴出链接,为此不必担心遗漏知识。

本篇的内容主要是快速配置一台云服务器,主要目的是把本地训练挪至服务器,从而加快我们训练与预测的速度。

服务器平台:AutoDL算力云。

1.准备工作

在算力市场(AutoDL算力云 | 弹性、好用、省钱。租GPU就上AutoDL)选择合适的服务器:

然后选择Pytorch版本:

注意

  • 在选卡的时候注意最高CUDA版本和自己需要用的是否一致;
  • 如果在创建镜像时,选择Miniconda,则需要进行额外。我们的需求只需要管理一个环境,无需用conda;
  • 创建后Pytorch服务器就已经配好,无需自己配置;

2.配置PyCharm

2.1.连接服务器

用Pycharm打开ultralytics-main,打开设置,找到项目:

在Pycharm中打开设置,找到Python解释器:

添加解释器,选择SSH:

界面如下:

在控制台复制登录指令和密码:

复制代码
ssh -p 5xxx6 root@connect.bjb1.seetacloud.com
bugaosunimima

其中,主机为connect.bjb1.seetacloud.com,端口为5xxx9,用户名为root

密码也从控制台复制即可。点击下一步:

然后再点下一步:

**进入第四步时,不要着急创建!先不点击下一步!**回到控制台,打开JupyterLab,在autodl-tmp文件夹下创建存放工程的文件夹:

最好与本地路径一样,防止自己忘记:

回到Pycharm,选择系统解释器,而非Virtualenv环境,进行如下配置:

点击创建,Pycharm就会自动上传。

2.2.配置部署服务器

然后进行如下配置:

2.3.配置Jupyter

创建一个Jupyter文件:

右上角配置Jupyter服务器:

修改命令行实参:

复制代码
notebook
--no-browser
--allow-root
--port 5xxx6

应用后即可。

至此Pycharm配置完成。

3.安装项目依赖(如需要)

仅抛砖引玉。打开JupyterLab,进入存放项目的文件夹。在此文件夹下,打开终端,输入:

复制代码
pip install scikit-learn

在服务器安装项目依赖不需要换源。

注:这里是进入项目文件夹之后下载的,实际上并不一定需要进入项目文件夹再下载。

4.Pycharm里的便捷服务

4.1.使用终端

打开终端,选择服务器:

输入命令:

复制代码
cd autodl-tmp/PyTorch/test1

4.2.从服务器上下载文件到本地

如何将服务器上的内容下载到本地呢?点击浏览远程主机:

会弹出界面。找到相应文件夹,右键下载到本地即可:

相关推荐
聚客AI几秒前
解构高效提示工程:分层模型、文本扩展引擎与可视化调试全链路指南
人工智能·llm·掘金·日新计划
DuelCode3 分钟前
Windows VMWare Centos Docker部署Nginx并配置对Springboot应用的访问代理
linux·运维·服务器
myloveasuka10 分钟前
信号操作集函数
linux·运维·服务器·c语言·c++·vscode
摆烂工程师14 分钟前
Claude Code 落地实践的工作简易流程
人工智能·claude·敏捷开发
CoovallyAIHub15 分钟前
YOLOv13都来了,目标检测还卷得动吗?别急,还有这些新方向!
深度学习·算法·计算机视觉
亚马逊云开发者16 分钟前
得心应手:探索 MCP 与数据库结合的应用场景
人工智能
大明哥_20 分钟前
100 个 Coze 精品案例 - 小红书爆款图文,单篇点赞 20000+,用 Coze 智能体一键生成有声儿童绘本!
人工智能
聚客AI21 分钟前
🚀拒绝试错成本!企业接入MCP协议的避坑清单
人工智能·掘金·日新计划·mcp
rocksun1 小时前
GraphRAG vs. RAG:差异详解
人工智能
一块plus1 小时前
什么是去中心化 AI?区块链驱动智能的初学者指南
人工智能·后端·算法