深度学习中的yield

以下为例:

复制代码
def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    # 这些样本是随机读取的,没有特定的顺序
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]

在 Python 中,yield是一个关键字,使用yield的函数是一个生成器函数

生成器函数的基本概念

  • 普通函数在执行时,遇到return语句就会终止函数执行,并返回相应的值。而生成器函数在执行过程中,遇到yield语句时,会暂停函数的执行,保存当前的执行状态(包括局部变量的值等),并返回yield后面表达式的值(如果有的话)。当下一次通过某种方式(比如在循环中迭代这个生成器)来请求生成器继续执行时,函数会从上次暂停的地方(也就是yield语句处)继续往下执行,直到再次遇到yield语句或者函数执行完毕(如果没有更多的yield语句了)。

data_iter 函数中的具体作用

  • data_iter 函数里,目的是将给定的数据集(featureslabels)按照指定的 batch_size 划分成一个个小批次(batch)数据来方便后续的批量训练等操作。
  • 当循环执行到 yield features[batch_indices], labels[batch_indices] 这一行时:
    • 首先,它会基于当前批次对应的索引(batch_indices)从总的特征数据 features 和标签数据 labels 中取出相应的批次数据。
    • 然后,将取出的该批次的特征数据和标签数据作为一个元组返回,这个返回值可以被外部代码获取到(比如在循环中迭代这个生成器来依次获取每个批次的数据)。
    • 执行完这次 yield 后,函数就暂停在这里了,等到下一次继续迭代这个生成器(比如下一次循环到这里来获取下一个批次的数据),函数会接着从这个 yield 语句之后继续执行,重新去处理下一组索引范围,取出下一个批次的数据并返回,如此反复,直到整个数据集的样本都被划分成批次并返回完。

总的来说,yielddata_iter 函数变成了一个生成器,能方便地按批次逐个生成数据,避免一次性把所有数据都处理好放入内存,节省内存空间并且符合按批次处理数据的常见深度学习训练流程需求。

相关推荐
小楓120119 分钟前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業
数据与人工智能律师31 分钟前
数字迷雾中的安全锚点:解码匿名化与假名化的法律边界与商业价值
大数据·网络·人工智能·云计算·区块链
chenchihwen32 分钟前
大模型应用班-第2课 DeepSeek使用与提示词工程课程重点 学习ollama 安装 用deepseek-r1:1.5b 分析PDF 内容
人工智能·学习
说私域40 分钟前
公域流量向私域流量转化策略研究——基于开源AI智能客服、AI智能名片与S2B2C商城小程序的融合应用
人工智能·小程序
Java樱木1 小时前
AI 编程工具 Trae 重要的升级。。。
人工智能
码字的字节1 小时前
深度学习损失函数的设计哲学:从交叉熵到Huber损失的深入探索
深度学习·交叉熵·huber
凪卄12131 小时前
图像预处理 二
人工智能·python·深度学习·计算机视觉·pycharm
碳酸的唐2 小时前
Inception网络架构:深度学习视觉模型的里程碑
网络·深度学习·架构
AI赋能2 小时前
自动驾驶训练-tub详解
人工智能·深度学习·自动驾驶
seasonsyy2 小时前
1.安装anaconda详细步骤(含安装截图)
python·深度学习·环境配置