深度学习中的yield

以下为例:

def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    # 这些样本是随机读取的,没有特定的顺序
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]

在 Python 中,yield是一个关键字,使用yield的函数是一个生成器函数

生成器函数的基本概念

  • 普通函数在执行时,遇到return语句就会终止函数执行,并返回相应的值。而生成器函数在执行过程中,遇到yield语句时,会暂停函数的执行,保存当前的执行状态(包括局部变量的值等),并返回yield后面表达式的值(如果有的话)。当下一次通过某种方式(比如在循环中迭代这个生成器)来请求生成器继续执行时,函数会从上次暂停的地方(也就是yield语句处)继续往下执行,直到再次遇到yield语句或者函数执行完毕(如果没有更多的yield语句了)。

data_iter 函数中的具体作用

  • data_iter 函数里,目的是将给定的数据集(featureslabels)按照指定的 batch_size 划分成一个个小批次(batch)数据来方便后续的批量训练等操作。
  • 当循环执行到 yield features[batch_indices], labels[batch_indices] 这一行时:
    • 首先,它会基于当前批次对应的索引(batch_indices)从总的特征数据 features 和标签数据 labels 中取出相应的批次数据。
    • 然后,将取出的该批次的特征数据和标签数据作为一个元组返回,这个返回值可以被外部代码获取到(比如在循环中迭代这个生成器来依次获取每个批次的数据)。
    • 执行完这次 yield 后,函数就暂停在这里了,等到下一次继续迭代这个生成器(比如下一次循环到这里来获取下一个批次的数据),函数会接着从这个 yield 语句之后继续执行,重新去处理下一组索引范围,取出下一个批次的数据并返回,如此反复,直到整个数据集的样本都被划分成批次并返回完。

总的来说,yielddata_iter 函数变成了一个生成器,能方便地按批次逐个生成数据,避免一次性把所有数据都处理好放入内存,节省内存空间并且符合按批次处理数据的常见深度学习训练流程需求。

相关推荐
zenRRan13 分钟前
Qwen2.5-VL Technical Report!!! 操作手机电脑、解析化学公式和乐谱、剪辑电影等,妥妥六边形战士 !...
人工智能
让我安静会22 分钟前
Obsidian·Copilot 插件配置(让AI根据Obsidian笔记内容进行对话)
人工智能·笔记·copilot
Allen_LVyingbo26 分钟前
Scrum方法论指导下的Deepseek R1医疗AI部署开发
人工智能·健康医疗·scrum
Watermelo61742 分钟前
从DeepSeek大爆发看AI革命困局:大模型如何突破算力囚笼与信任危机?
人工智能·深度学习·神经网络·机器学习·ai·语言模型·自然语言处理
Donvink43 分钟前
【DeepSeek-R1背后的技术】系列九:MLA(Multi-Head Latent Attention,多头潜在注意力)
人工智能·深度学习·语言模型·transformer
计算机软件程序设计1 小时前
深度学习在图像识别中的应用-以花卉分类系统为例
人工智能·深度学习·分类
Ainnle1 小时前
企业级RAG开源项目分享:Quivr、MaxKB、Dify、FastGPT、RagFlow
人工智能·开源
小天努力学java2 小时前
AI赋能传统系统:Spring AI Alibaba如何用大模型重构机票预订系统?
人工智能·spring
Fuweizn2 小时前
在工业生产中,物料搬运环节至关重要,搬运机器人开启新篇章
人工智能·智能机器人·复合机器人
技术员阿伟2 小时前
《AI赋能星际探索:机器人如何开启宇宙新征程!》
人工智能