数据挖掘之聚类分析

聚类分析(Clustering Analysis) 是数据挖掘中的一项重要技术,旨在根据对象间的相似性或差异性,将对象分为若干组(簇)。同一簇内的对象相似性较高,而不同簇间的对象差异性较大。聚类分析广泛应用于图像处理、市场细分、文本分析、基因分析等多个领域。


1. 聚类分析的核心概念

  1. 样本点和特征

    样本点通常是具有多维特征的数据实例,特征可以是数值型或类别型,描述样本的属性。

  2. 距离或相似度

    聚类依赖于样本点之间的距离或相似度来定义其关系:

    • 常用的距离度量:欧氏距离、曼哈顿距离、余弦相似度等。
    • 对于类别型数据,也可使用汉明距离或匹配系数等方法。
  3. 聚类结果

    • 硬聚类:每个样本严格属于某个簇(如 K-Means)。
    • 软聚类:每个样本属于多个簇的概率(如高斯混合模型 GMM)。

2. 常用聚类算法

(1)基于划分的方法
  • K-Means

    通过迭代优化簇内数据的平方误差,将数据划分为 k个簇。

    优点:简单高效;适用于球状簇。

    缺点:需要提前指定 k,对初始值和噪声敏感。

  • K-Medoids

    用簇内的实际样本点作为簇中心,比 K-Means 更鲁棒,但计算复杂度较高。

(2)基于层次的方法
  • 层次聚类(Hierarchical Clustering)
    通过不断合并或拆分簇形成树状结构,分为:
    • 自底向上(凝聚层次聚类)。
    • 自顶向下(分裂层次聚类)。
      优点:可视化聚类结构;无需提前指定簇数。
      缺点:计算复杂度高;对噪声和离群点敏感。
(3)基于密度的方法
  • DBSCAN

    基于密度的空间聚类,能够识别任意形状的簇,同时检测噪声点。

    优点:无需指定簇数;鲁棒性强。

    缺点:对参数 εε 和最小点数 MinPtsMinPts 比较敏感。

  • OPTICS

    是 DBSCAN 的改进,解决了不同密度分布数据的聚类问题。

(4)基于模型的方法
  • 高斯混合模型(GMM)
    假设数据由多个高斯分布组成,使用期望最大化(EM)算法优化。
    优点:适用于软聚类;可解释性强。
    缺点:容易陷入局部最优;对初值敏感。
(5)基于网格的方法
  • CLIQUE
    将空间划分为等间距的网格并聚类,适合高维数据分析。
(6)基于图的方法
  • 谱聚类(Spectral Clustering)
    利用样本点的图结构,计算拉普拉斯矩阵的特征向量进行聚类。
    优点:适合非球形簇;对维度扩展性好。
    缺点:计算复杂度高。

3. 聚类分析的评价指标

聚类效果的评估分为两类:

  1. 内部指标(无需真实标签):

    • 簇内距离(越小越好)。
    • 簇间距离(越大越好)。
    • 轮廓系数(Silhouette Coefficient):结合簇内和簇间的距离综合评估。
  2. 外部指标(需要真实标签):

    • Rand Index:衡量预测簇与真实簇的一致性。
    • 归一化互信息(NMI):评估聚类结果与真实分布的相似程度。
    • Purity:聚类结果中最大类别样本所占的比例。

4. 聚类分析的应用

  1. 市场细分

    根据客户特征划分群体,制定差异化营销策略。

  2. 图像处理

    如图像分割、目标检测。

  3. 文本分析

    • 文档主题聚类。
    • 新闻分类。
  4. 生物信息学

    基因表达数据分析,识别基因功能模块。

  5. 异常检测

    将离群点作为噪声进行识别。


5. 聚类分析的挑战

  • 高维数据处理
    维度过高会导致"维度灾难",需结合降维技术(如 PCA 或 t-SNE)。
  • 簇数的确定
    自动确定最佳簇数是一个开放性问题。
  • 数据分布复杂性
    数据可能存在非线性结构或不同密度。
  • 噪声和离群点
    对算法的稳定性提出更高要求。

6. 实践案例:Python 聚类分析

使用 K-Means 对二维数据聚类:

复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

# 生成样本数据
from sklearn.datasets import make_blobs
X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)

# K-Means 聚类
kmeans = KMeans(n_clusters=4, random_state=0)
y_kmeans = kmeans.fit_predict(X)

# 绘制聚类结果
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75)
plt.title("K-Means Clustering")
plt.show()

聚类分析是数据挖掘中的重要工具,通过掌握不同算法的特点、适用场景及实践应用,可以帮助解决各种实际问题。

相关推荐
微学AI5 分钟前
融合注意力机制和BiGRU的电力领域发电量预测项目研究,并给出相关代码
人工智能·深度学习·自然语言处理·注意力机制·bigru
知来者逆17 分钟前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
一勺汤20 分钟前
YOLOv11改进-双Backbone架构:利用双backbone提高yolo11目标检测的精度
人工智能·yolo·双backbone·double backbone·yolo11 backbone·yolo 双backbone
武汉唯众智创22 分钟前
高职人工智能技术应用专业(计算机视觉方向)实训室解决方案
人工智能·计算机视觉·人工智能实训室·计算机视觉实训室·人工智能计算机视觉实训室
Johny_Zhao33 分钟前
MySQL 高可用集群搭建部署
linux·人工智能·mysql·信息安全·云计算·shell·yum源·系统运维·itsm
一只可爱的小猴子43 分钟前
2022李宏毅老师机器学习课程笔记
人工智能·笔记·机器学习
地瓜机器人1 小时前
乐聚机器人与地瓜机器人达成战略合作,联合发布Aelos Embodied具身智能
人工智能·机器人
带娃的IT创业者1 小时前
《AI大模型趣味实战》基于RAG向量数据库的知识库AI问答助手设计与实现
数据库·人工智能
__Benco1 小时前
OpenHarmony - 小型系统内核(LiteOS-A)(十),魔法键使用方法,用户态异常信息说明
人工智能·harmonyos
小杨4041 小时前
python入门系列二十(peewee)
人工智能·python·pycharm