大数据平台

大数据行业应用持续升温,特别是企业级大数据市场正在进入快速发展时期。越来越多的企业期望实现数据孤岛的打通,整合海量的数据资源,挖掘并沉淀有价值的数据,进而驱动更智能的商业。随着公司数据爆发式增长,原有的数据库无法承担海量数据的处理,那么就开始考虑大数据平台了。大数据平台应该支持大数据常用的Hadoop 组件,如HBase、Hive、Flume、Spark,也可以接Greenplum,而Greenplum 正好有它的外部表(也就是Greenplum 创建一张表,表的特性叫作外部表,读取的内容是Hadoop 的Hive 中的),这可以和Hadoop 融合(当然也可以不用外部表)。通过搭建企业级的大数据平台,打通各系统之间的数据,通过多源异构接入多个业务系统的数据,完成对海量数据的整合。大数据采集平台应支持多样数据源,接口丰富,支持文件和关系型数据库等,支持直接跨库跨源的混合计算。

大数据平台实现数据的分层与水平解耦,沉淀公共的数据能力。这可分为三层:数据模型、数据服务与数据开发,通过数据建模实现跨域数据的整合和知识沉淀,通过数据服务实现对于数据的封装和开放,快速、灵活地满足上层应用的要求,通过数据开发工具满足个性化数据和应用的需要。某运营商的数据平台:

数据平台还涉及三方面内容。第一是数据技术。大家都有自己的数据中心、机房、小数据库。但当数据积累到一定体量后,这方面的成本会非常高,而且数据之间的质量和标准不一样,会导致效率不高等问题。因此,我们需要通过数据技术对海量数据进行采集、计算、存储、加工,同时统一标准和口径。第二是数据资产。把数据统一之后,会形成标准数据,再进行存储,形成大数据资产层,进而保证为各业务提供高效服务。第三是数据服务,包括指数,就是数据平台面向上端提供的数据服务。

数据平台应确保大家在使用数据的过程中,口径、标准、时效性、效率都有保障,能有更高的可靠性和稳定性。

相关推荐
爱编程的王小美1 小时前
Elasticsearch详解
大数据·elasticsearch·搜索引擎
大湾区经济门户网3 小时前
中国移动启动数字乡村“五新升级”:年底前,行政村5G覆盖达95%
大数据·5g·区块链·媒体
小诸葛的博客4 小时前
es中节点类型有哪些
大数据·elasticsearch·jenkins
随缘而动,随遇而安4 小时前
第四十篇 企业级数据仓库建模深度实践:从理论到落地的维度建模全攻略
大数据·数据库·数据仓库·数据分析·数据库架构
2501_911067666 小时前
探秘叁仟智盒设备:智慧城市的智能枢纽
大数据·人工智能·智慧城市
黄雪超7 小时前
核心知识—— RDD常用算子之数据转换
大数据·spark
AWS官方合作商7 小时前
AWS云服务:大数据公司实现技术突破与商业价值的核心引擎
大数据·云计算·aws
码界筑梦坊11 小时前
基于Spark的抖音数据分析热度预测系统
大数据·信息可视化·数据分析·spark·毕业设计·个性化推荐
生信学习小达人13 小时前
arcgis10.8 Toolbox中没有找到conversion tools模块
大数据
Oo_Amy_oO13 小时前
Airflow+Spark/Flink vs. Kettle
大数据·flink·spark