大数据平台

大数据行业应用持续升温,特别是企业级大数据市场正在进入快速发展时期。越来越多的企业期望实现数据孤岛的打通,整合海量的数据资源,挖掘并沉淀有价值的数据,进而驱动更智能的商业。随着公司数据爆发式增长,原有的数据库无法承担海量数据的处理,那么就开始考虑大数据平台了。大数据平台应该支持大数据常用的Hadoop 组件,如HBase、Hive、Flume、Spark,也可以接Greenplum,而Greenplum 正好有它的外部表(也就是Greenplum 创建一张表,表的特性叫作外部表,读取的内容是Hadoop 的Hive 中的),这可以和Hadoop 融合(当然也可以不用外部表)。通过搭建企业级的大数据平台,打通各系统之间的数据,通过多源异构接入多个业务系统的数据,完成对海量数据的整合。大数据采集平台应支持多样数据源,接口丰富,支持文件和关系型数据库等,支持直接跨库跨源的混合计算。

大数据平台实现数据的分层与水平解耦,沉淀公共的数据能力。这可分为三层:数据模型、数据服务与数据开发,通过数据建模实现跨域数据的整合和知识沉淀,通过数据服务实现对于数据的封装和开放,快速、灵活地满足上层应用的要求,通过数据开发工具满足个性化数据和应用的需要。某运营商的数据平台:

数据平台还涉及三方面内容。第一是数据技术。大家都有自己的数据中心、机房、小数据库。但当数据积累到一定体量后,这方面的成本会非常高,而且数据之间的质量和标准不一样,会导致效率不高等问题。因此,我们需要通过数据技术对海量数据进行采集、计算、存储、加工,同时统一标准和口径。第二是数据资产。把数据统一之后,会形成标准数据,再进行存储,形成大数据资产层,进而保证为各业务提供高效服务。第三是数据服务,包括指数,就是数据平台面向上端提供的数据服务。

数据平台应确保大家在使用数据的过程中,口径、标准、时效性、效率都有保障,能有更高的可靠性和稳定性。

相关推荐
狮歌~资深攻城狮2 小时前
HBase性能优化秘籍:让数据处理飞起来
大数据·hbase
Elastic 中国社区官方博客3 小时前
Elasticsearch Open Inference API 增加了对 Jina AI 嵌入和 Rerank 模型的支持
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·jina
workflower3 小时前
Prompt Engineering的重要性
大数据·人工智能·设计模式·prompt·软件工程·需求分析·ai编程
API_technology5 小时前
电商搜索API的Elasticsearch优化策略
大数据·elasticsearch·搜索引擎
黄雪超5 小时前
大数据SQL调优专题——引擎优化
大数据·数据库·sql
The god of big data5 小时前
MapReduce 第二部:深入分析与实践
大数据·mapreduce
G***技6 小时前
杰和科技GAM-AI视觉识别管理系统,让AI走进零售营销
大数据·人工智能·系统架构
天天爱吃肉82187 小时前
碳化硅(SiC)功率器件:新能源汽车的“心脏”革命与技术突围
大数据·人工智能
Java资深爱好者8 小时前
在Spark中,如何使用DataFrame进行高效的数据处理
大数据·分布式·spark
跨境卫士小树10 小时前
店铺矩阵崩塌前夜:跨境多账号运营的3个生死线
大数据·线性代数·矩阵