代码随想录算法训练营day41|动态规划买卖股票问题

今天的三题买卖股票问题,实际上解题方法都大同小异,思路也和昨天的树形dp有相似之处,都是用一个dp数组的不同下标来记录不同的状态。其中第一题是只买卖一次,可以用贪心的方法,找出左边的最小值和右边的最大值,相减即可最大利润。如果用动态规划的方法,则分别用0和1来表示持有股票和不持有股票,dp[i][0]和dp[i][1]表示当前拥有的现金,则持有股票就减去price[i],卖出股票就加上price[i],又因为这题只卖出一次,所以可以列出如下方程:

复制代码
            dp[i][0] = max(dp[i - 1][0], -prices[i]);
            dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

第二题与第一题的区别在于买卖次数没有限制,则方程应更改为下图:

复制代码
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1]-price[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0]+price[i]);

同时第二题也可以使用贪心,将每次买卖都拆解开,

复制代码
interest=price[3]-price[2]+price[2]-price[1]+price[1]-price[0]

所以将正数部分累加即可得到最大值。

第三题与第一题的区别在于买卖次数上限改为两次,不好用贪心。考虑dp代码如下:

复制代码
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

注意到每一次的状态只跟前一次有关,所以可以进行降维处理,这里卡哥采用正序遍历,我觉得类似一维01背包的倒序遍历更好理解:

复制代码
            dp[4]=max(dp[4],dp[3]+prices[i]); 
            dp[3]=max(dp[3],dp[2]-prices[i]);   
            dp[2]=max(dp[2],dp[1]+prices[i]);
            dp[1]=max(dp[1],-prices[i]);

采用倒序遍历保证每一次的数值在计算前不会被覆盖

相关推荐
清酒难咽18 小时前
算法案例之递归
c++·经验分享·算法
让我上个超影吧18 小时前
【力扣26&80】删除有序数组中的重复项
算法·leetcode
张张努力变强19 小时前
C++ Date日期类的设计与实现全解析
java·开发语言·c++·算法
沉默-_-20 小时前
力扣hot100滑动窗口(C++)
数据结构·c++·学习·算法·滑动窗口
钱彬 (Qian Bin)20 小时前
项目实践19—全球证件智能识别系统(优化检索算法:从MobileNet转EfficientNet)
算法·全球证件识别
feifeigo12320 小时前
基于EM算法的混合Copula MATLAB实现
开发语言·算法·matlab
漫随流水20 小时前
leetcode回溯算法(78.子集)
数据结构·算法·leetcode·回溯算法
IT猿手21 小时前
六种智能优化算法(NOA、MA、PSO、GA、ZOA、SWO)求解23个基准测试函数(含参考文献及MATLAB代码)
开发语言·算法·matlab·无人机·无人机路径规划·最新多目标优化算法
We་ct21 小时前
LeetCode 151. 反转字符串中的单词:两种解法深度剖析
前端·算法·leetcode·typescript
芜湖xin21 小时前
【题解-Acwing】AcWing 5579. 增加模数(TLE)
算法·快速幂