代码随想录算法训练营day41|动态规划买卖股票问题

今天的三题买卖股票问题,实际上解题方法都大同小异,思路也和昨天的树形dp有相似之处,都是用一个dp数组的不同下标来记录不同的状态。其中第一题是只买卖一次,可以用贪心的方法,找出左边的最小值和右边的最大值,相减即可最大利润。如果用动态规划的方法,则分别用0和1来表示持有股票和不持有股票,dp[i][0]和dp[i][1]表示当前拥有的现金,则持有股票就减去price[i],卖出股票就加上price[i],又因为这题只卖出一次,所以可以列出如下方程:

复制代码
            dp[i][0] = max(dp[i - 1][0], -prices[i]);
            dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

第二题与第一题的区别在于买卖次数没有限制,则方程应更改为下图:

复制代码
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1]-price[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0]+price[i]);

同时第二题也可以使用贪心,将每次买卖都拆解开,

复制代码
interest=price[3]-price[2]+price[2]-price[1]+price[1]-price[0]

所以将正数部分累加即可得到最大值。

第三题与第一题的区别在于买卖次数上限改为两次,不好用贪心。考虑dp代码如下:

复制代码
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

注意到每一次的状态只跟前一次有关,所以可以进行降维处理,这里卡哥采用正序遍历,我觉得类似一维01背包的倒序遍历更好理解:

复制代码
            dp[4]=max(dp[4],dp[3]+prices[i]); 
            dp[3]=max(dp[3],dp[2]-prices[i]);   
            dp[2]=max(dp[2],dp[1]+prices[i]);
            dp[1]=max(dp[1],-prices[i]);

采用倒序遍历保证每一次的数值在计算前不会被覆盖

相关推荐
JianminZheng3 小时前
MTPA算法原理及仿真验证
算法
im_AMBER3 小时前
Leetcode 38
笔记·学习·算法·leetcode
Miraitowa_cheems4 小时前
LeetCode算法日记 - Day 82: 环形子数组的最大和
java·数据结构·算法·leetcode·决策树·线性回归·深度优先
Code_Shark4 小时前
AtCoder Beginner Contest 426 题解
数据结构·c++·算法·数学建模·青少年编程
仰泳的熊猫4 小时前
LeetCode:698. 划分为k个相等的子集
数据结构·c++·算法·leetcode
豐儀麟阁贵4 小时前
4.5数组排序算法
java·开发语言·数据结构·算法·排序算法
Shinom1ya_5 小时前
算法 day 32
算法
WBluuue6 小时前
数据结构与算法:摩尔投票算法
c++·算法·leetcode
文火冰糖的硅基工坊7 小时前
[人工智能-大模型-66]:模型层技术 - 两种编程范式:数学函数式编程与逻辑推理式编程,构建起截然不同的智能系统。
人工智能·神经网络·算法·1024程序员节
im_AMBER7 小时前
Leetcode 34
算法·leetcode