代码随想录算法训练营day41|动态规划买卖股票问题

今天的三题买卖股票问题,实际上解题方法都大同小异,思路也和昨天的树形dp有相似之处,都是用一个dp数组的不同下标来记录不同的状态。其中第一题是只买卖一次,可以用贪心的方法,找出左边的最小值和右边的最大值,相减即可最大利润。如果用动态规划的方法,则分别用0和1来表示持有股票和不持有股票,dp[i][0]和dp[i][1]表示当前拥有的现金,则持有股票就减去price[i],卖出股票就加上price[i],又因为这题只卖出一次,所以可以列出如下方程:

复制代码
            dp[i][0] = max(dp[i - 1][0], -prices[i]);
            dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

第二题与第一题的区别在于买卖次数没有限制,则方程应更改为下图:

复制代码
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1]-price[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0]+price[i]);

同时第二题也可以使用贪心,将每次买卖都拆解开,

复制代码
interest=price[3]-price[2]+price[2]-price[1]+price[1]-price[0]

所以将正数部分累加即可得到最大值。

第三题与第一题的区别在于买卖次数上限改为两次,不好用贪心。考虑dp代码如下:

复制代码
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

注意到每一次的状态只跟前一次有关,所以可以进行降维处理,这里卡哥采用正序遍历,我觉得类似一维01背包的倒序遍历更好理解:

复制代码
            dp[4]=max(dp[4],dp[3]+prices[i]); 
            dp[3]=max(dp[3],dp[2]-prices[i]);   
            dp[2]=max(dp[2],dp[1]+prices[i]);
            dp[1]=max(dp[1],-prices[i]);

采用倒序遍历保证每一次的数值在计算前不会被覆盖

相关推荐
Lecea_L几秒前
你能在K步内赚最多的钱吗?用Java解锁最大路径收益算法(含AI场景分析)
java·人工智能·算法
Tony882 分钟前
热题100 - 394. 字符串解码
java·算法
Lecea_L8 分钟前
🔍 找到数组里的“节奏感”:最长等差子序列
java·算法
是Dream呀10 分钟前
ResNeXt: 通过聚合残差变换增强深度神经网络
人工智能·算法
学习2年半1 小时前
53. 最大子数组和
算法
君义_noip1 小时前
信息学奥赛一本通 1524:旅游航道
c++·算法·图论·信息学奥赛
烁3472 小时前
每日一题(小白)动态规划篇5
算法·动态规划
独好紫罗兰2 小时前
洛谷题单2-P5717 【深基3.习8】三角形分类-python-流程图重构
开发语言·python·算法
滴答滴答嗒嗒滴2 小时前
Python小练习系列 Vol.8:组合总和(回溯 + 剪枝 + 去重)
python·算法·剪枝
lidashent2 小时前
数据结构和算法——汉诺塔问题
数据结构·算法