代码随想录算法训练营day41|动态规划买卖股票问题

今天的三题买卖股票问题,实际上解题方法都大同小异,思路也和昨天的树形dp有相似之处,都是用一个dp数组的不同下标来记录不同的状态。其中第一题是只买卖一次,可以用贪心的方法,找出左边的最小值和右边的最大值,相减即可最大利润。如果用动态规划的方法,则分别用0和1来表示持有股票和不持有股票,dp[i][0]和dp[i][1]表示当前拥有的现金,则持有股票就减去price[i],卖出股票就加上price[i],又因为这题只卖出一次,所以可以列出如下方程:

复制代码
            dp[i][0] = max(dp[i - 1][0], -prices[i]);
            dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

第二题与第一题的区别在于买卖次数没有限制,则方程应更改为下图:

复制代码
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1]-price[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0]+price[i]);

同时第二题也可以使用贪心,将每次买卖都拆解开,

复制代码
interest=price[3]-price[2]+price[2]-price[1]+price[1]-price[0]

所以将正数部分累加即可得到最大值。

第三题与第一题的区别在于买卖次数上限改为两次,不好用贪心。考虑dp代码如下:

复制代码
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

注意到每一次的状态只跟前一次有关,所以可以进行降维处理,这里卡哥采用正序遍历,我觉得类似一维01背包的倒序遍历更好理解:

复制代码
            dp[4]=max(dp[4],dp[3]+prices[i]); 
            dp[3]=max(dp[3],dp[2]-prices[i]);   
            dp[2]=max(dp[2],dp[1]+prices[i]);
            dp[1]=max(dp[1],-prices[i]);

采用倒序遍历保证每一次的数值在计算前不会被覆盖

相关推荐
二进制person4 小时前
Java SE--方法的使用
java·开发语言·算法
OneQ6664 小时前
C++讲解---创建日期类
开发语言·c++·算法
JoJo_Way5 小时前
LeetCode三数之和-js题解
javascript·算法·leetcode
.30-06Springfield5 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
凌肖战7 小时前
力扣网C语言编程题:在数组中查找目标值位置之二分查找法
c语言·算法·leetcode
weixin_478689767 小时前
十大排序算法汇总
java·算法·排序算法
luofeiju8 小时前
使用LU分解求解线性方程组
线性代数·算法
SKYDROID云卓小助手8 小时前
无人设备遥控器之自动调整编码技术篇
人工智能·嵌入式硬件·算法·自动化·信号处理
ysa0510308 小时前
数论基础知识和模板
数据结构·c++·笔记·算法
GEEK零零七9 小时前
Leetcode 1103. 分糖果 II
数学·算法·leetcode·等差数列