神经网络基础-初识神经网络

人工神经网络( Artificial Neural Network, 简写为ANN )也简称为神经网络(NN),是一种模仿生物神经网络结构和功能的计算模型 。人脑可以看做是一个生物神经网络,由众多的神经元 连接而成。各个神经元传递复杂的电信号,树突接收到输入信号 ,然后对信号进行处理,通过轴突输出信号。下图是生物神经元示意图:
当电信号通过树突进入到细胞核时,会逐渐聚集电荷。达到一定的电位后,细胞就会被激活,通过轴突发出电信号。

那怎么构建人工神经网络中的神经元呢?

这个过程就像,来源不同树突(树突都会有不同的权重)的信息, 进行的加权计算, 输入到细胞中做加和,再通过激活函数输出细胞值。

接下来,我们使用多个神经元来构建神经网络,相邻层之间的神经元相互连接,并给每一个连接分配一个强度,如下图所示:

神经网络中信息只向一个方向移动,即从输入节点向前移动,通过隐藏节点,再向输出节点移动。其中的基本部分是:

  1. 输入层:即输入 x 的那一层
  2. 输出层:即输出 y 的那一层
  3. 隐藏层:输入层和输出层之间都是隐藏层

特点是:

  • 同一层的神经元之间没有连接。
  • 第 N 层的每个神经元和第 N-1层 的所有神经元相连(这就是full connected的含义),这就是全连接神经网络。
  • 第N-1层神经元的输出就是第N层神经元的输入。
  • 每个连接都有一个权重值(w系数和b系数)。
相关推荐
康康的AI博客4 小时前
腾讯王炸:CodeMoment - 全球首个产设研一体 AI IDE
ide·人工智能
中达瑞和-高光谱·多光谱4 小时前
中达瑞和LCTF:精准调控光谱,赋能显微成像新突破
人工智能
mahtengdbb14 小时前
【目标检测实战】基于YOLOv8-DynamicHGNetV2的猪面部检测系统搭建与优化
人工智能·yolo·目标检测
Pyeako4 小时前
深度学习--BP神经网络&梯度下降&损失函数
人工智能·python·深度学习·bp神经网络·损失函数·梯度下降·正则化惩罚
清 澜5 小时前
大模型面试400问第一部分第一章
人工智能·大模型·大模型面试
哥布林学者5 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(四)分层 softmax 和负采样
深度学习·ai
不大姐姐AI智能体5 小时前
搭了个小红书笔记自动生产线,一句话生成图文,一键发布,支持手机端、电脑端发布
人工智能·经验分享·笔记·矩阵·aigc
虹科网络安全6 小时前
艾体宝方案 | 释放数据潜能 · 构建 AI 驱动的自动驾驶实时数据处理与智能筛选平台
人工智能·机器学习·自动驾驶
Deepoch6 小时前
Deepoc数学大模型:发动机行业的算法引擎
人工智能·算法·机器人·发动机·deepoc·发动机行业