代码随想录算法训练营day42|动态规划part9

今天的第一题和第三题都比较简单,只需在前面的题目的代码上略加修改即可。第二题是有冷冻期的股票问题,这题的状态分析比前面的题目难不少。

卡哥的做法是分为四个状态,分别是持有股票,保持不持有股票的状态,卖出股票的状态以及冷冻期4个状态。根据定义可列出状态转移方程如下:

复制代码
dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];

这题非常巧妙的地方在于相较于前面两题,这题将保持不持有股票的状态和卖出股票的状态分开,这样有利于进行冷冻期的操作。

接下来进行初始化,dp[0][0]的意思是在第0天持有股票时的现金,自然是0.接着dp[0][1],这里不能直接根据字面意思推断,是因为这里dp[0][1]本身没有意义,所以要根据状态转移方程推导出dp[0][1]=0,因为如果初始化为其它数值答案都不正确。

我自己用的方法是用flag标记冷冻期,然后分类讨论:

复制代码
 vector<vector<int>>dp(prices.size(),vector<int>(2,0));
        int flag=0;//标记冷冻期状态
        dp[0][0]=0;
        dp[0][1]=-prices[0];
        //0表示卖出,1表示买入;
        for(int i=1;i<prices.size();i++){
            
            if(flag==0||i<2){
                dp[i][1]=max(dp[i-1][1],dp[i-1][0]-prices[i]);
            }
               else if(flag==1&&i>=2){//防止数组越界
               // dp[i][0]=max(dp[i-2][0],dp[i-2][1]+prices[i]);
                dp[i][1]=max(dp[i-2][1],dp[i-2][0]-prices[i]);
                flag=0;//在冷冻期后的一次处理后更新冷冻期状态
           }
           dp[i][0]=max(dp[i-1][0],dp[i-1][1]+prices[i]);
            if(dp[i][0]==dp[i-1][1]+prices[i]) {
                    flag=1;//更新冷冻期状态
                }
            
        }

但是卡哥的思路还是更为直观的

相关推荐
快去睡觉~3 小时前
力扣73:矩阵置零
算法·leetcode·矩阵
小欣加油3 小时前
leetcode 3 无重复字符的最长子串
c++·算法·leetcode
猿究院--王升6 小时前
jvm三色标记
java·jvm·算法
一车小面包6 小时前
逻辑回归 从0到1
算法·机器学习·逻辑回归
tt5555555555558 小时前
字符串与算法题详解:最长回文子串、IP 地址转换、字符串排序、蛇形矩阵与字符串加密
c++·算法·矩阵
元亓亓亓8 小时前
LeetCode热题100--101. 对称二叉树--简单
算法·leetcode·职场和发展
不会学习?9 小时前
算法03 归并分治
算法
NuyoahC9 小时前
笔试——Day43
c++·算法·笔试
2301_8219199210 小时前
决策树8.19
算法·决策树·机器学习
秋难降10 小时前
别再用暴力排序了!大小顶堆让「取极值」效率飙升至 O (log n)
python·算法·排序算法