【5】数据分析基础(series2)

前面,我们了解了Series这种数据结构,学习了如何创建一个Series。

接下来,我们学习访问Series的数据的两种方式:

  1. 位置索引访问

  2. 索引标签访问

访问Series的数据

|--------------------------------------------------------------------------------------------------------------------------------------------|
| 1. 位置索引访问 这种访问方式和列表相同,是基于元素自身的下标来进行访问。 对于一个列表list,list[i]表示list的第i+1个元素。 同理,我们通过这种方式就可以获得Series序列中的每个数据。 示例中,我们通过info[0]输出了info的第一个数据。 |
| |
| 结果:80855 |

|---------------------------------------------------------------------------------------------------|
| 2. 索引标签访问 这种访问方式和字典相同,把index中的索引标签当做字典的key,而把Series序列的值当做字典的value。 示例中,我们通过索引标签'JS'输出了info中对应的数据。 |
| |
| 结果:77388 |

总结:

|-------------------------------------------------------------------------------------------------------------|
| 访问Series数据 |
| 1. 位置索引访问。 这种访问方式和列表相同,是基于元素自身的下标来进行访问。 2. 索引标签访问。 这种访问方式和字典相同,把index中的索引标签当做字典的key,而把Series序列的值当做字典的value。 |
| |

|-----------------------------------------------------|----------------------------------------------------------------------------|
| 最后,我们简单了解Series的3种常用属性: 1. dtype 2. values 3. index | |

|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. dtype 我们从前面知道,Series对象有多种数据类型:字符串型、整型、浮点型、布尔型。 我们访问Series对象的dtype属性,会返回Series对象具体的数据类型。 | |
| 我们访问Series对象的dtype属性,可以返回Series对象的数据类型。 示例中,我们通过访问Series对象的dtype属性,返回了变量info的数据类型,并将其输出。 根据输出可以看到,变量info的数据类型为整型。 | import pandas as pd info = pd.Series([80855, 77388, 68024, 47251, 40471],index = ['GD','JS','SD','ZJ','HN']) # 输出了info中的数据的类型 print(info.dtype) 结果: int64 |
| 2. values 我们访问Series对象的values属性,会以数组的形式返回Series对象的值values。 | |
| 示例中,我们通过访问Series对象的values属性,返回了变量info的值values,并将其输出。 根据输出可以看到,以数组的形式返回了变量info的值values。 注意: Series是一维的数据结构,所以返回一维数组。 | import pandas as pd info = pd.Series([80855, 77388, 68024, 47251, 40471],index = ['GD','JS','SD','ZJ','HN']) # 输出了info中的值values print(info.values) 结果: [80855 77388 68024 47251 40471] |
| 3. index 我们访问Series对象的index属性,可以返回这个Series的索引index。 | |

|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 示例中,我们通过访问Series对象的index属性,返回了变量info的索引index,将其输出。 根据输出可以看到,返回了变量info的索引index。 | import pandas as pd info = pd.Series([80855, 77388, 68024, 47251, 40471],index = ['GD','JS','SD','ZJ','HN']) # 输出了变量info的索引index print(info.index) 结果: Index(['GD', 'JS', 'SD', 'ZJ', 'HN'], dtype='object') |

总结:

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Series的3种常用属性 |
| 1. dtype 我们访问Series对象的dtype属性,可以返回Series对象的数据类型。 2. values 我们访问Series对象的values属性,会以数组的形式返回Series对象的值values。 3. index 我们访问Series对象的index属性,可以返回这个Series的索引index。 |
| |

相关推荐
zzywxc7874 小时前
AI 驱动的软件测试革新:框架、检测与优化实践
人工智能·深度学习·机器学习·数据挖掘·数据分析
Blossom.1186 小时前
基于深度学习的医学图像分析:使用CycleGAN实现图像到图像的转换
人工智能·深度学习·目标检测·机器学习·分类·数据挖掘·语音识别
Leo.yuan10 小时前
国内数据集成厂商有哪些?如何选择最适合的数据集成平台?
大数据·人工智能·信息可视化·数据挖掘·数据分析
银河金融数据库11 小时前
沪深L2逐笔十档委托队列分时Tick历史数据分析处理
数据挖掘·数据分析·#a股沪深深度订单簿历史行情·#股指国债期货五档报价快照下载·#大宗商品期货行情·#etf五档订单薄分钟
博闻录12 小时前
观远 ChatBI 完成 DeepSeek-R1 大模型适配:开启智能数据分析跃升新篇
大数据·人工智能·数据分析
码界奇点14 小时前
Python深度挖掘:openpyxl与pandas高效数据处理实战指南
开发语言·数据库·python·自动化·pandas·python3.11
码界筑梦坊15 小时前
91-基于Spark的空气质量数据分析可视化系统
大数据·python·数据分析·spark·django·numpy·pandas
蔷薇のぬ19 小时前
Python 使用pandas库实现Excel字典码表对照自动化处理
python·pandas
audyxiao00120 小时前
2025年6月数据挖掘顶刊TKDE研究热点有哪些?
人工智能·数据挖掘·大模型·热点分析·tkde
云天徽上1 天前
【数据可视化-74】电信用户流失数据可视化分析:Python + Pyecharts 炫酷大屏(含完整的数据,代码)
开发语言·python·信息可视化·数据挖掘·数据分析·数据可视化·pyecharts