【5】数据分析基础(series2)

前面,我们了解了Series这种数据结构,学习了如何创建一个Series。

接下来,我们学习访问Series的数据的两种方式:

  1. 位置索引访问

  2. 索引标签访问

访问Series的数据

|--------------------------------------------------------------------------------------------------------------------------------------------|
| 1. 位置索引访问 这种访问方式和列表相同,是基于元素自身的下标来进行访问。 对于一个列表list,list[i]表示list的第i+1个元素。 同理,我们通过这种方式就可以获得Series序列中的每个数据。 示例中,我们通过info[0]输出了info的第一个数据。 |
| |
| 结果:80855 |

|---------------------------------------------------------------------------------------------------|
| 2. 索引标签访问 这种访问方式和字典相同,把index中的索引标签当做字典的key,而把Series序列的值当做字典的value。 示例中,我们通过索引标签'JS'输出了info中对应的数据。 |
| |
| 结果:77388 |

总结:

|-------------------------------------------------------------------------------------------------------------|
| 访问Series数据 |
| 1. 位置索引访问。 这种访问方式和列表相同,是基于元素自身的下标来进行访问。 2. 索引标签访问。 这种访问方式和字典相同,把index中的索引标签当做字典的key,而把Series序列的值当做字典的value。 |
| |

|-----------------------------------------------------|----------------------------------------------------------------------------|
| 最后,我们简单了解Series的3种常用属性: 1. dtype 2. values 3. index | |

|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. dtype 我们从前面知道,Series对象有多种数据类型:字符串型、整型、浮点型、布尔型。 我们访问Series对象的dtype属性,会返回Series对象具体的数据类型。 | |
| 我们访问Series对象的dtype属性,可以返回Series对象的数据类型。 示例中,我们通过访问Series对象的dtype属性,返回了变量info的数据类型,并将其输出。 根据输出可以看到,变量info的数据类型为整型。 | import pandas as pd info = pd.Series([80855, 77388, 68024, 47251, 40471],index = ['GD','JS','SD','ZJ','HN']) # 输出了info中的数据的类型 print(info.dtype) 结果: int64 |
| 2. values 我们访问Series对象的values属性,会以数组的形式返回Series对象的值values。 | |
| 示例中,我们通过访问Series对象的values属性,返回了变量info的值values,并将其输出。 根据输出可以看到,以数组的形式返回了变量info的值values。 注意: Series是一维的数据结构,所以返回一维数组。 | import pandas as pd info = pd.Series([80855, 77388, 68024, 47251, 40471],index = ['GD','JS','SD','ZJ','HN']) # 输出了info中的值values print(info.values) 结果: [80855 77388 68024 47251 40471] |
| 3. index 我们访问Series对象的index属性,可以返回这个Series的索引index。 | |

|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 示例中,我们通过访问Series对象的index属性,返回了变量info的索引index,将其输出。 根据输出可以看到,返回了变量info的索引index。 | import pandas as pd info = pd.Series([80855, 77388, 68024, 47251, 40471],index = ['GD','JS','SD','ZJ','HN']) # 输出了变量info的索引index print(info.index) 结果: Index(['GD', 'JS', 'SD', 'ZJ', 'HN'], dtype='object') |

总结:

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Series的3种常用属性 |
| 1. dtype 我们访问Series对象的dtype属性,可以返回Series对象的数据类型。 2. values 我们访问Series对象的values属性,会以数组的形式返回Series对象的值values。 3. index 我们访问Series对象的index属性,可以返回这个Series的索引index。 |
| |

相关推荐
kisshuan123962 小时前
基于Mask-RCNN与Res2Net的排水系统缺陷检测与分类
人工智能·数据挖掘
jiaozi_zzq2 小时前
2026 高职财务专业就业方向与进阶指南
大数据·数据分析·证书·财务
kisshuan123966 小时前
实战景观图像识别与分类_faster-rcnn_hrnetv2p-w40_2x_coco模型应用
人工智能·分类·数据挖掘
L.fountain6 小时前
图像自回归生成(Auto-regressive image generation)实战学习(四)
人工智能·深度学习·学习·数据挖掘·回归
2501_941507946 小时前
交通标志识别与分类改进_YOLOv13融合C3k2与IDWB模块提升红绿灯及限速标志检测效果_原创
yolo·分类·数据挖掘
kisshuan123967 小时前
基于VFNet的轮胎标签检测与分类系统
人工智能·分类·数据挖掘
梦仔生信进阶7 小时前
【零基础生信入门】知识从头梳理
数据分析
LDG_AGI8 小时前
【推荐系统】深度学习训练框架(二十三):TorchRec端到端超大规模模型分布式训练+推理实战
人工智能·分布式·深度学习·机器学习·数据挖掘·推荐算法
十六年开源服务商8 小时前
WordPress建站与数据可视化解决方案
信息可视化·数据挖掘·数据分析
weixin_446260859 小时前
揭开数据分析的新篇章:OpenBB金融数据平台
金融·数据挖掘·数据分析