【5】数据分析基础(series2)

前面,我们了解了Series这种数据结构,学习了如何创建一个Series。

接下来,我们学习访问Series的数据的两种方式:

  1. 位置索引访问

  2. 索引标签访问

访问Series的数据

|--------------------------------------------------------------------------------------------------------------------------------------------|
| 1. 位置索引访问 这种访问方式和列表相同,是基于元素自身的下标来进行访问。 对于一个列表list,list[i]表示list的第i+1个元素。 同理,我们通过这种方式就可以获得Series序列中的每个数据。 示例中,我们通过info[0]输出了info的第一个数据。 |
| |
| 结果:80855 |

|---------------------------------------------------------------------------------------------------|
| 2. 索引标签访问 这种访问方式和字典相同,把index中的索引标签当做字典的key,而把Series序列的值当做字典的value。 示例中,我们通过索引标签'JS'输出了info中对应的数据。 |
| |
| 结果:77388 |

总结:

|-------------------------------------------------------------------------------------------------------------|
| 访问Series数据 |
| 1. 位置索引访问。 这种访问方式和列表相同,是基于元素自身的下标来进行访问。 2. 索引标签访问。 这种访问方式和字典相同,把index中的索引标签当做字典的key,而把Series序列的值当做字典的value。 |
| |

|-----------------------------------------------------|----------------------------------------------------------------------------|
| 最后,我们简单了解Series的3种常用属性: 1. dtype 2. values 3. index | |

|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. dtype 我们从前面知道,Series对象有多种数据类型:字符串型、整型、浮点型、布尔型。 我们访问Series对象的dtype属性,会返回Series对象具体的数据类型。 | |
| 我们访问Series对象的dtype属性,可以返回Series对象的数据类型。 示例中,我们通过访问Series对象的dtype属性,返回了变量info的数据类型,并将其输出。 根据输出可以看到,变量info的数据类型为整型。 | import pandas as pd info = pd.Series([80855, 77388, 68024, 47251, 40471],index = ['GD','JS','SD','ZJ','HN']) # 输出了info中的数据的类型 print(info.dtype) 结果: int64 |
| 2. values 我们访问Series对象的values属性,会以数组的形式返回Series对象的值values。 | |
| 示例中,我们通过访问Series对象的values属性,返回了变量info的值values,并将其输出。 根据输出可以看到,以数组的形式返回了变量info的值values。 注意: Series是一维的数据结构,所以返回一维数组。 | import pandas as pd info = pd.Series([80855, 77388, 68024, 47251, 40471],index = ['GD','JS','SD','ZJ','HN']) # 输出了info中的值values print(info.values) 结果: [80855 77388 68024 47251 40471] |
| 3. index 我们访问Series对象的index属性,可以返回这个Series的索引index。 | |

|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 示例中,我们通过访问Series对象的index属性,返回了变量info的索引index,将其输出。 根据输出可以看到,返回了变量info的索引index。 | import pandas as pd info = pd.Series([80855, 77388, 68024, 47251, 40471],index = ['GD','JS','SD','ZJ','HN']) # 输出了变量info的索引index print(info.index) 结果: Index(['GD', 'JS', 'SD', 'ZJ', 'HN'], dtype='object') |

总结:

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Series的3种常用属性 |
| 1. dtype 我们访问Series对象的dtype属性,可以返回Series对象的数据类型。 2. values 我们访问Series对象的values属性,会以数组的形式返回Series对象的值values。 3. index 我们访问Series对象的index属性,可以返回这个Series的索引index。 |
| |

相关推荐
万能程序员-传康Kk6 小时前
旅游推荐数据分析可视化系统算法
算法·数据分析·旅游
正在走向自律10 小时前
Python 数据分析与可视化:开启数据洞察之旅(5/10)
开发语言·人工智能·python·数据挖掘·数据分析
lilye6610 小时前
精益数据分析(49/126):UGC商业模式中消息提醒与内容分享的关键作用
数据挖掘·数据分析
小L爱科研13 小时前
4.7/Q1,GBD数据库最新文章解读
数据库·机器学习·数据分析·回归·健康医疗
kngines14 小时前
【PostgreSQL数据分析实战:从数据清洗到可视化全流程】金融风控分析案例-10.4 模型部署与定期评估
postgresql·数据分析·存储过程·jsonb·pg_cron·ks值·影子测试机制
想看雪的瓜14 小时前
Nature图形复现—两种快速绘制热图的方法
信息可视化·数据挖掘·数据分析
镜舟科技14 小时前
湖仓一体架构在金融典型数据分析场景中的实践
starrocks·金融·架构·数据分析·湖仓一体·物化视图·lakehouse
生信大杂烩17 小时前
R语言绘图 | 渐变火山图
数据分析·r语言
Hello world.Joey17 小时前
数据挖掘入门-二手车交易价格预测
人工智能·python·数据挖掘·数据分析·conda·pandas
kngines17 小时前
【PostgreSQL数据分析实战:从数据清洗到可视化全流程】金融风控分析案例-10.3 风险指标可视化监控
postgresql·数据分析·区块链·逾期率·不良贷款率·客户信用评分