OpenCV--图像查找

OpenCV--图像查找

代码和笔记

python 复制代码
import cv2
import numpy as np

"""
图像查找--特征匹配的应用,通过特征匹配和单应性矩阵
单应性变换:描述物体在世界坐标系(原图)和像素坐标系(对比图)之间的位置映射关系,对应的变换矩阵成为单应性矩阵
应用-图像摆正、图片替换
"""
# 在小图中找大图
img1 = cv2.imread('./img/ca2.jpeg')
img2 = cv2.imread('./img/cat.jpeg')

gary1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gary2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

# 创建特征检测器
sift = cv2.SIFT_create()

# 计算描述子
kp1, des1 = sift.detectAndCompute(gary1, None)
kp2, des2 = sift.detectAndCompute(gary2, None)

# 创建特征匹配器
bf = cv2.BFMatcher(cv2.NORM_L1)

# 进行匹配
match = bf.match(des1, des2)

# 找到第一幅图的位置(点)对应在第二幅的位置(点),根据这些点计算单应性矩阵
# 计算单应性矩阵至少需要四个点--矩形的四个角类似
if len(match) >= 4:

    # src_points:源平面中点的坐标矩阵。 dst_points:目标平面中点的坐标矩阵
    # queryIdx:kp1的描述子Index。 trainIdx:kp2的描述子Index
    # .pt表示获取坐标。OpenCV里面点的类型要求为(1,1,2)第一个1是点的个数,-1表示自动匹配
    # 第二个1是每个 (x, y) 坐标对将被放置在一个单独的"行"中
    # 第三个2是指数组的第三个维度的大小,对应于每个 (x, y) 坐标对的两个元素
    # 用np.float32将列表转化为ndarray类型,再用reshape变成点类型
    src_points = np.float32([kp1[m.queryIdx].pt for m in match]).reshape(-1, 1, 2)
    dst_points = np.float32([kp2[m.trainIdx].pt for m in match]).reshape(-1, 1, 2)

    # 根据匹配的点计算单应性矩阵。findHomography返回矩阵和mask
    # 计算单应性矩阵的方法:cv2.RANSAC,表示随机抽样一致性。
    # 最大允许重投影错误阈值 5
    H, _ = cv2.findHomography(src_points, dst_points, cv2.RANSAC, 5)

    # 通过单应性矩阵,计算小图(img1)在大图中的对应位置
    # 拿出img1的行和列,也就是长和宽 彩色图像的shape为行、列和通道数,[:2]取前两个元素
    h, w = img1.shape[:2]

    # 逆时针四个角
    pts = np.float32([[0, 0], [0, h-1], [w-1, h-1], [w-1, 0]]).reshape(-1, 1, 2)

    # 对图片进行透视变换 perspectiveTransform是向量的用法,之前的warpPerspective是对图片而言
    dst = cv2.perspectiveTransform(pts, H)

    # 在大图中画出dst来,这里dst为小数,要转化一下。 True:是否闭合。2为粗细
    cv2.polylines(img2, [np.int32(dst)], True, (0, 0, 255), 2)
else:
    exit()

# 画出匹配特征点
ret = cv2.drawMatches(img1, kp1, img2, kp2, match, None)
cv2.imshow('ret', ret)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
羊小猪~~25 分钟前
数据库学习笔记(十五)--变量与定义条件与处理程序
数据库·人工智能·笔记·后端·sql·学习·mysql
ahhhhaaaa-32 分钟前
【AI图像生成网站&Golang】部署图像生成服务(阿里云ACK+GPU实例)
开发语言·数据仓库·人工智能·后端·阿里云·golang
摘取一颗天上星️1 小时前
NLP进化史:从规则模板到思维链推理,七次范式革命全解析
人工智能·自然语言处理
知舟不叙1 小时前
深度学习——基于PyTorch的MNIST手写数字识别详解
人工智能·pytorch·深度学习·手写数字识别
Jamence1 小时前
多模态大语言模型arxiv论文略读(118)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
愚农搬码1 小时前
LangChain 调用不同类型的多MCP服务
人工智能·后端
AI速译官2 小时前
字节跳动推出视频生成新模型Seedance
人工智能
chenquan2 小时前
ArkFlow 流处理引擎 0.4.0-rc1 发布
人工智能·后端·github
Se7en2582 小时前
使用 Higress AI 网关代理 vLLM 推理服务
人工智能
AI大模型技术社3 小时前
PyTorch手撕CNN:可视化卷积过程+ResNet18训练代码详解
人工智能·神经网络