图像拼接 边缘色差, 轮廓平均值修复

目录

效果不理想

代码:lunkuo_mohu.py


效果不理想

代码:lunkuo_mohu.py

python 复制代码
import cv2
import numpy as np

img_mask = cv2.imread(r'F:\project\ronghe\Poisson-Blending-main\mask_new.jpg', 0)
img_path = r'F:\project\ronghe\Poisson-Blending-main\res2.jpg'
image = cv2.imread(img_path)

edges = cv2.Canny(img_mask, threshold1=100, threshold2=200)

if 0:#轮廓膨胀
    kernel = np.ones((5, 5), np.uint8)

    # 向外扩展(膨胀)
    dilated = cv2.dilate(edges, kernel, iterations=2)

    # 向内扩展(腐蚀)
    eroded = cv2.erode(edges, kernel, iterations=2)

    # 合并膨胀和腐蚀后的结果(实现同时向内和向外扩展)
    edges = cv2.bitwise_or(dilated, eroded)
# 获取图像的高度和宽度
height, width = edges.shape

# 创建一个输出图像,初始时与原图像相同
output_image = image.copy()

# 遍历所有边缘像素
for y in range(1, height - 1):
    for x in range(1, width - 1):
        if edges[y, x] != 0:  # 检查是否是边缘像素
            # 获取该像素周围8个邻域像素(3x3邻域内的其他8个像素)
            region = image[y - 1:y + 2, x - 1:x + 2]

            # 计算邻域像素的平均颜色(忽略中心点)
            neighbors = region[region != region[1, 1]]  # 不包括中心点
            avg_color = np.mean(image[neighbors], axis=(0, 1))  # 计算平均颜色

            # 将该边缘像素的颜色设置为平均颜色
            output_image[y, x] = avg_color.astype(np.uint8)

# 显示结果
cv2.imshow('edges', edges)
cv2.imshow('Edges Colored by Neighbors Average', output_image)

cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
curemoon8 分钟前
理解都远正态分布中指数项的精度矩阵(协方差逆矩阵)
人工智能·算法·矩阵
胡桃不是夹子1 小时前
CPU安装pytorch(别点进来)
人工智能·pytorch·python
Fansv5871 小时前
深度学习-6.用于计算机视觉的深度学习
人工智能·深度学习·计算机视觉
xjxijd1 小时前
AI 为金融领域带来了什么突破?
人工智能·其他
SKYDROID云卓小助手2 小时前
无人设备遥控器之如何分享数传篇
网络·人工智能·算法·计算机视觉·电脑
deephub2 小时前
LLM高效推理:KV缓存与分页注意力机制深度解析
人工智能·深度学习·语言模型
old_power2 小时前
Linux(Ubuntu24.04)源码编译安装OpenCV4.6.0
linux·opencv
奋斗的袍子0072 小时前
Spring AI + Ollama 实现调用DeepSeek-R1模型API
人工智能·spring boot·深度学习·spring·springai·deepseek
青衫弦语2 小时前
【论文精读】VLM-AD:通过视觉-语言模型监督实现端到端自动驾驶
人工智能·深度学习·语言模型·自然语言处理·自动驾驶
没枕头我咋睡觉2 小时前
【大语言模型_4】源码编译vllm框架cpu版
人工智能·语言模型·自然语言处理