图像拼接 边缘色差, 轮廓平均值修复

目录

效果不理想

代码:lunkuo_mohu.py


效果不理想

代码:lunkuo_mohu.py

python 复制代码
import cv2
import numpy as np

img_mask = cv2.imread(r'F:\project\ronghe\Poisson-Blending-main\mask_new.jpg', 0)
img_path = r'F:\project\ronghe\Poisson-Blending-main\res2.jpg'
image = cv2.imread(img_path)

edges = cv2.Canny(img_mask, threshold1=100, threshold2=200)

if 0:#轮廓膨胀
    kernel = np.ones((5, 5), np.uint8)

    # 向外扩展(膨胀)
    dilated = cv2.dilate(edges, kernel, iterations=2)

    # 向内扩展(腐蚀)
    eroded = cv2.erode(edges, kernel, iterations=2)

    # 合并膨胀和腐蚀后的结果(实现同时向内和向外扩展)
    edges = cv2.bitwise_or(dilated, eroded)
# 获取图像的高度和宽度
height, width = edges.shape

# 创建一个输出图像,初始时与原图像相同
output_image = image.copy()

# 遍历所有边缘像素
for y in range(1, height - 1):
    for x in range(1, width - 1):
        if edges[y, x] != 0:  # 检查是否是边缘像素
            # 获取该像素周围8个邻域像素(3x3邻域内的其他8个像素)
            region = image[y - 1:y + 2, x - 1:x + 2]

            # 计算邻域像素的平均颜色(忽略中心点)
            neighbors = region[region != region[1, 1]]  # 不包括中心点
            avg_color = np.mean(image[neighbors], axis=(0, 1))  # 计算平均颜色

            # 将该边缘像素的颜色设置为平均颜色
            output_image[y, x] = avg_color.astype(np.uint8)

# 显示结果
cv2.imshow('edges', edges)
cv2.imshow('Edges Colored by Neighbors Average', output_image)

cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
飞哥数智坊8 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三8 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯9 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet11 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算11 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心11 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar13 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai13 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI13 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear15 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp