图像拼接 边缘色差, 轮廓平均值修复

目录

效果不理想

代码:lunkuo_mohu.py


效果不理想

代码:lunkuo_mohu.py

python 复制代码
import cv2
import numpy as np

img_mask = cv2.imread(r'F:\project\ronghe\Poisson-Blending-main\mask_new.jpg', 0)
img_path = r'F:\project\ronghe\Poisson-Blending-main\res2.jpg'
image = cv2.imread(img_path)

edges = cv2.Canny(img_mask, threshold1=100, threshold2=200)

if 0:#轮廓膨胀
    kernel = np.ones((5, 5), np.uint8)

    # 向外扩展(膨胀)
    dilated = cv2.dilate(edges, kernel, iterations=2)

    # 向内扩展(腐蚀)
    eroded = cv2.erode(edges, kernel, iterations=2)

    # 合并膨胀和腐蚀后的结果(实现同时向内和向外扩展)
    edges = cv2.bitwise_or(dilated, eroded)
# 获取图像的高度和宽度
height, width = edges.shape

# 创建一个输出图像,初始时与原图像相同
output_image = image.copy()

# 遍历所有边缘像素
for y in range(1, height - 1):
    for x in range(1, width - 1):
        if edges[y, x] != 0:  # 检查是否是边缘像素
            # 获取该像素周围8个邻域像素(3x3邻域内的其他8个像素)
            region = image[y - 1:y + 2, x - 1:x + 2]

            # 计算邻域像素的平均颜色(忽略中心点)
            neighbors = region[region != region[1, 1]]  # 不包括中心点
            avg_color = np.mean(image[neighbors], axis=(0, 1))  # 计算平均颜色

            # 将该边缘像素的颜色设置为平均颜色
            output_image[y, x] = avg_color.astype(np.uint8)

# 显示结果
cv2.imshow('edges', edges)
cv2.imshow('Edges Colored by Neighbors Average', output_image)

cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
精致先生10 分钟前
RAG(检索增强生成)
人工智能·大模型·rag
老周聊大模型32 分钟前
LangChain已死?不,是时候重新思考AI工程范式了
人工智能·langchain·mcp
Pigwantofly1 小时前
SpringAI入门及浅实践,实战 Spring‎ AI 调用大模型、提示词工程、对话记忆、Adv‎isor 的使用
java·大数据·人工智能·spring
Eloudy1 小时前
复矩阵与共轭转置矩阵乘积及其平方根矩阵
人工智能·算法·矩阵
m0_631354451 小时前
VTK开发day2:切片矩阵
人工智能·算法·矩阵
拓端研究室1 小时前
专题:2025电商增长新势力洞察报告:区域裂变、平台垄断与银发平权|附260+报告PDF、原数据表汇总下载
大数据·人工智能
go54631584651 小时前
在本地环境中运行 ‘dom-distiller‘ GitHub 库的完整指南
人工智能·深度学习·神经网络·算法·矩阵·github
那雨倾城1 小时前
PiscCode使用OpenCV实现漂浮方块特效
python·opencv
KaneLogger1 小时前
一文了解提示词、提示词工程和上下文工程
人工智能·程序员
XINVRY-FPGA2 小时前
XCZU4EV-1FBVB900E Xilinx FPGA AMD Zynq UltraScale+ MPSoC EV(Embedded Vision)
arm开发·嵌入式硬件·计算机视觉·fpga开发·硬件架构·硬件工程·fpga