从〇开始深度学习(番外)——混淆矩阵(Confusion Matrix)

从〇开始深度学习(番外)------混淆矩阵(Confusion Matrix)

文章目录

写在前面

《从〇开始深度学习(番外)》系列主要记录一些细碎知识点和技能,与主线并不冲突。如果主线笔记中用得到番外篇的知识或技能,会在文中贴出链接,为此不必担心遗漏知识。

本篇的内容主要是浅析一下混淆矩阵和归一化混淆矩阵。

1.混淆矩阵

混淆矩阵是一种用于评估分类模型性能的表格形式,它以实际类别(真实值)和模型预测类别为基础,将样本分类结果进行统计和汇总。这里看一个实例:

对于二分类问题,混淆矩阵通常是一个2×2的矩阵,包括真阳性(True Positive, TP)、真阴性(True Negative, TN)、假阳性(False Positive, FP)和假阴性(False Negative, FN)四个元素。

这个5*5的矩阵是这样理解的:

真实值=holothurian 真实值=echinus 真实值=starfish 真实值=scallop 真实值=background
预测值=holothurian
预测值=echinus
预测值=starfish
预测值=scallop
预测值=background

而矩阵中的数值就是出现该情况的频次。

2.归一化混淆矩阵

混淆矩阵的归一化,就是对混淆矩阵做了一个归一化处理,对混淆矩阵进行归一化可以将每个单元格的值除以该类别实际样本数,从而得到表示分类准确率的百分比。这种标准化使得我们可以直观地比较类别间的分类准确率,并识别出模型在哪些类别上表现较好或较差。

实际上就是:
频次 总样本数 \frac{频次}{总样本数} 总样本数频次

相关推荐
Moshow郑锴5 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20255 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR6 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散137 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8247 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945197 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火8 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴9 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR10 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢10 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网