从〇开始深度学习(番外)——混淆矩阵(Confusion Matrix)

从〇开始深度学习(番外)------混淆矩阵(Confusion Matrix)

文章目录

写在前面

《从〇开始深度学习(番外)》系列主要记录一些细碎知识点和技能,与主线并不冲突。如果主线笔记中用得到番外篇的知识或技能,会在文中贴出链接,为此不必担心遗漏知识。

本篇的内容主要是浅析一下混淆矩阵和归一化混淆矩阵。

1.混淆矩阵

混淆矩阵是一种用于评估分类模型性能的表格形式,它以实际类别(真实值)和模型预测类别为基础,将样本分类结果进行统计和汇总。这里看一个实例:

对于二分类问题,混淆矩阵通常是一个2×2的矩阵,包括真阳性(True Positive, TP)、真阴性(True Negative, TN)、假阳性(False Positive, FP)和假阴性(False Negative, FN)四个元素。

这个5*5的矩阵是这样理解的:

真实值=holothurian 真实值=echinus 真实值=starfish 真实值=scallop 真实值=background
预测值=holothurian
预测值=echinus
预测值=starfish
预测值=scallop
预测值=background

而矩阵中的数值就是出现该情况的频次。

2.归一化混淆矩阵

混淆矩阵的归一化,就是对混淆矩阵做了一个归一化处理,对混淆矩阵进行归一化可以将每个单元格的值除以该类别实际样本数,从而得到表示分类准确率的百分比。这种标准化使得我们可以直观地比较类别间的分类准确率,并识别出模型在哪些类别上表现较好或较差。

实际上就是:
频次 总样本数 \frac{频次}{总样本数} 总样本数频次

相关推荐
min181123456几秒前
金融风控中的实时行为建模
大数据·人工智能
笙枫4 分钟前
基于AI Agent框架下的能源优化调度方案和实践 |工具函数介绍(详细)
java·人工智能·能源
lanicc5 分钟前
TOON:为大语言模型优化的紧凑结构化数据格式
人工智能·语言模型·自然语言处理
:mnong5 分钟前
人工智能发展简史
人工智能
沛沛老爹10 分钟前
Skills高级设计模式(一):向导式工作流与模板生成
java·人工智能·设计模式·prompt·aigc·agent·web转型
学习研习社15 分钟前
人工智能能让医疗变得更有人性化吗?
人工智能
言之。16 分钟前
大模型 API 中的 Token Log Probabilities(logprobs)
人工智能·算法·机器学习
IT_陈寒16 分钟前
React 19 实战:5个新特性让你的开发效率提升50%!
前端·人工智能·后端
Deepoch22 分钟前
当机器人学会“思考“:Deepoc外拓板如何让景区服务实现智能化跃迁
人工智能·机器人·开发板·具身模型·deepoc
Cigaretter723 分钟前
Day 38 早停策略和模型权重的保存
python·深度学习·机器学习