【conda/cuda/cudnn/tensorrt】一份简洁的深度学习环境安装清单

🚀本文主要总结一下conda、cuda、cudnn、tensorrt的快速安装。至于nvidia显卡驱动的安装,暂且不提。本文适合有一定反复安装经验的读者😂,方便其快速整理安装思路。

NVIDIA Drivers


🌔01

conda

⭐️ 注意,conda环境中使用pip,是安装在该环境下,受conda影响;但使用apt依然安装在系统环境下,不受conda影响。

miniconda index
① {\color{#E16B8C}{①}} ① 选择合适的miniconda版本(假定用latest);
② {\color{#E16B8C}{②}} ② 用sh安装,先用wget下载文件;

bash 复制代码
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

③ {\color{#E16B8C}{③}} ③ bash按照指引安装;

bash 复制代码
bash Miniconda3-latest-Linux-x86_64.sh

🌔02

CUDA

CUDA Toolkit Archive
① {\color{#E16B8C}{①}} ① 根据nvidia显卡驱动和ubuntu的版本选择cuda版本;
② {\color{#E16B8C}{②}} ② 使用runfile安装(以cuda11.8为例);

bash 复制代码
chmod +x cuda_11.8.0_520.61.05_linux.run
./cuda_11.8.0_520.61.05_linux.run

③ {\color{#E16B8C}{③}} ③ 创建软连接;

bash 复制代码
cd /usr/local
ln -s cuda-11.8 cuda

④ {\color{#E16B8C}{④}} ④ 设置.bashrc;

bash 复制代码
# cuda
export CUDA_HOME=/usr/local/cuda
export PATH=$CUDA_HOME/bin:$PATH
export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
export CPLUS_INCLUDE_PATH=$CUDA_HOME/include:$CPLUS_INCLUDE_PATH

🌔03

cuDNN

cuDNN Archive
① {\color{#E16B8C}{①}} ① 根据cuda版本选择cudnn版本;
② {\color{#E16B8C}{②}} ② 使用deb安装(以cudnnn8.9.7为例);

bash 复制代码
dpkg -i cudnn-local-repo-ubuntu2204-8.9.7.29_1.0-1_amd64.deb
# 具体公钥的内容参考上一语句的输出,cudnn版本不同,公钥不同
cp /var/cudnn-local-repo-ubuntu2204-8.9.7.29/cudnn-local-8AE81B24-keyring.gpg /usr/share/keyrings/
sudo apt update
sudo apt install libcudnn8
sudo apt install libcudnn8-dev
sudo apt install libcudnn8-samples

③ {\color{#E16B8C}{③}} ③设置.bashrc;

bash 复制代码
# cudnn
export CUDNN_HOME=/usr/lib/x86_64-linux-gnu
export LD_LIBRARY_PATH=$CUDNN_HOME/lib64:$LD_LIBRARY_PATH

🌔04

TensorRT

TensorRT Download
① {\color{#E16B8C}{①}} ① 根据cuda版本选择tensorrt版本;
② {\color{#E16B8C}{②}} ② 使用tar安装(以tensorrt8.6.1为例);

bash 复制代码
tar -xzvf TensorRT-8.6.1.6.Linux.x86_64-gnu.cuda-11.8.tar.gz
sudo mv TensorRT-8.6.1.6 /usr/local

③ {\color{#E16B8C}{③}} ③ 创建软连接;

bash 复制代码
cd /usr/local
ln -s TensorRT-8.6.1.6 TensorRT

④ {\color{#E16B8C}{④}} ④ 设置.bashrc;

bash 复制代码
# tensorrt
export TENSORRT_HOME=/usr/local/TensorRT
export PATH=$TENSORRT_HOME/bin:$PATH
export LD_LIBRARY_PATH=$TENSORRT_HOME/lib:$LD_LIBRARY_PATH
export CPLUS_INCLUDE_PATH=$TENSORRT_HOME/include:$CPLUS_INCLUDE_PATH

⑤ {\color{#E16B8C}{⑤}} ⑤ 安装tensorrt python;

bash 复制代码
cd /usr/local/TensorRT/python
# 根据python版本安装,我的是python3.10版本,选择cp310
# 最好退出conda环境,选择系统环境的python版本,并在系统环境安装
pip install tensorrt-8.6.1-cp310-none-linux_x86_64.whl

🌔05

Appendix

5.1 fishros

安装ros/docker/clash,配置系统/ros/docker源等可以用它。

bash 复制代码
wget http://fishros.com/install -O fishros && . fishros

5.2 proxy

写在.bashrc中,之后可以使用proxy_on和proxy_off来选择开启或关闭代理。

bash 复制代码
# >>> proxy set >>>
proxy_on() 
{
export hostip=$(cat /etc/resolv.conf | grep nameserver | awk '{print $2}')
export http_proxy="http://${hostip}:7890"
export https_proxy="http://${hostip}:7890"
export all_proxy="socks5://${hostip}:7890"
echo "代理已开启,当前代理 IP: ${hostip}"
}

proxy_off() 
{
unset http_proxy
unset https_proxy
unset all_proxy
echo "代理已关闭"
}
# <<< proxy set <<<
相关推荐
无心水5 小时前
【分布式利器:腾讯TSF】10、TSF故障排查与架构评审实战:Java架构师从救火到防火的生产哲学
java·人工智能·分布式·架构·限流·分布式利器·腾讯tsf
小鸡吃米…12 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫12 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)12 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan12 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维12 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS13 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd13 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟13 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然14 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析