【conda/cuda/cudnn/tensorrt】一份简洁的深度学习环境安装清单

🚀本文主要总结一下conda、cuda、cudnn、tensorrt的快速安装。至于nvidia显卡驱动的安装,暂且不提。本文适合有一定反复安装经验的读者😂,方便其快速整理安装思路。

NVIDIA Drivers


🌔01

conda

⭐️ 注意,conda环境中使用pip,是安装在该环境下,受conda影响;但使用apt依然安装在系统环境下,不受conda影响。

miniconda index
① {\color{#E16B8C}{①}} ① 选择合适的miniconda版本(假定用latest);
② {\color{#E16B8C}{②}} ② 用sh安装,先用wget下载文件;

bash 复制代码
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

③ {\color{#E16B8C}{③}} ③ bash按照指引安装;

bash 复制代码
bash Miniconda3-latest-Linux-x86_64.sh

🌔02

CUDA

CUDA Toolkit Archive
① {\color{#E16B8C}{①}} ① 根据nvidia显卡驱动和ubuntu的版本选择cuda版本;
② {\color{#E16B8C}{②}} ② 使用runfile安装(以cuda11.8为例);

bash 复制代码
chmod +x cuda_11.8.0_520.61.05_linux.run
./cuda_11.8.0_520.61.05_linux.run

③ {\color{#E16B8C}{③}} ③ 创建软连接;

bash 复制代码
cd /usr/local
ln -s cuda-11.8 cuda

④ {\color{#E16B8C}{④}} ④ 设置.bashrc;

bash 复制代码
# cuda
export CUDA_HOME=/usr/local/cuda
export PATH=$CUDA_HOME/bin:$PATH
export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
export CPLUS_INCLUDE_PATH=$CUDA_HOME/include:$CPLUS_INCLUDE_PATH

🌔03

cuDNN

cuDNN Archive
① {\color{#E16B8C}{①}} ① 根据cuda版本选择cudnn版本;
② {\color{#E16B8C}{②}} ② 使用deb安装(以cudnnn8.9.7为例);

bash 复制代码
dpkg -i cudnn-local-repo-ubuntu2204-8.9.7.29_1.0-1_amd64.deb
# 具体公钥的内容参考上一语句的输出,cudnn版本不同,公钥不同
cp /var/cudnn-local-repo-ubuntu2204-8.9.7.29/cudnn-local-8AE81B24-keyring.gpg /usr/share/keyrings/
sudo apt update
sudo apt install libcudnn8
sudo apt install libcudnn8-dev
sudo apt install libcudnn8-samples

③ {\color{#E16B8C}{③}} ③设置.bashrc;

bash 复制代码
# cudnn
export CUDNN_HOME=/usr/lib/x86_64-linux-gnu
export LD_LIBRARY_PATH=$CUDNN_HOME/lib64:$LD_LIBRARY_PATH

🌔04

TensorRT

TensorRT Download
① {\color{#E16B8C}{①}} ① 根据cuda版本选择tensorrt版本;
② {\color{#E16B8C}{②}} ② 使用tar安装(以tensorrt8.6.1为例);

bash 复制代码
tar -xzvf TensorRT-8.6.1.6.Linux.x86_64-gnu.cuda-11.8.tar.gz
sudo mv TensorRT-8.6.1.6 /usr/local

③ {\color{#E16B8C}{③}} ③ 创建软连接;

bash 复制代码
cd /usr/local
ln -s TensorRT-8.6.1.6 TensorRT

④ {\color{#E16B8C}{④}} ④ 设置.bashrc;

bash 复制代码
# tensorrt
export TENSORRT_HOME=/usr/local/TensorRT
export PATH=$TENSORRT_HOME/bin:$PATH
export LD_LIBRARY_PATH=$TENSORRT_HOME/lib:$LD_LIBRARY_PATH
export CPLUS_INCLUDE_PATH=$TENSORRT_HOME/include:$CPLUS_INCLUDE_PATH

⑤ {\color{#E16B8C}{⑤}} ⑤ 安装tensorrt python;

bash 复制代码
cd /usr/local/TensorRT/python
# 根据python版本安装,我的是python3.10版本,选择cp310
# 最好退出conda环境,选择系统环境的python版本,并在系统环境安装
pip install tensorrt-8.6.1-cp310-none-linux_x86_64.whl

🌔05

Appendix

5.1 fishros

安装ros/docker/clash,配置系统/ros/docker源等可以用它。

bash 复制代码
wget http://fishros.com/install -O fishros && . fishros

5.2 proxy

写在.bashrc中,之后可以使用proxy_on和proxy_off来选择开启或关闭代理。

bash 复制代码
# >>> proxy set >>>
proxy_on() 
{
export hostip=$(cat /etc/resolv.conf | grep nameserver | awk '{print $2}')
export http_proxy="http://${hostip}:7890"
export https_proxy="http://${hostip}:7890"
export all_proxy="socks5://${hostip}:7890"
echo "代理已开启,当前代理 IP: ${hostip}"
}

proxy_off() 
{
unset http_proxy
unset https_proxy
unset all_proxy
echo "代理已关闭"
}
# <<< proxy set <<<
相关推荐
Pocker_Spades_A2 小时前
论文精读(五):面向链接预测的知识图谱表示学习方法综述
人工智能·链表·知识图谱
AI算法工程师Moxi2 小时前
人工智能在医学图像中的应用:从机器学习到深度学习
人工智能·深度学习·机器学习
Billy_Zuo2 小时前
人工智能机器学习——聚类
人工智能·机器学习·聚类
大熊背2 小时前
怎样利用AE统计数据优化安防芯片ISP的图像质量?
人工智能·自动曝光
百度智能云技术站2 小时前
AI 云再进化,百度智能云新技术与产品全景解读
人工智能·百度
Christo32 小时前
TFS-2023《Fuzzy Clustering With Knowledge Extraction and Granulation》
人工智能·算法·机器学习·支持向量机
Ai尚研修-贾莲2 小时前
全链路自主构建智慧科研写作系统——融合LLM语义理解、多智能体任务协同与n8n自动化工作流构建
人工智能·agent·智能体·deepseek·n8n·智慧科研写作·llm语义理解
过河卒_zh15667662 小时前
AI内容标识新规实施后,大厂AI用户协议有何变化?(二)百度系
人工智能·算法·aigc·算法备案·生成合成类算法备案
未来之窗软件服务3 小时前
商业软件开发入门到精通之路-东方仙盟
人工智能·数据挖掘·仙盟创梦ide·东方仙盟·商业软件开发入门
张较瘦_3 小时前
[论文阅读] 人工智能 + 软件工程 | 首个仓库级多任务调试数据集!RepoDebug揭秘LLM真实调试水平
论文阅读·人工智能