【conda/cuda/cudnn/tensorrt】一份简洁的深度学习环境安装清单

🚀本文主要总结一下conda、cuda、cudnn、tensorrt的快速安装。至于nvidia显卡驱动的安装,暂且不提。本文适合有一定反复安装经验的读者😂,方便其快速整理安装思路。

NVIDIA Drivers


🌔01

conda

⭐️ 注意,conda环境中使用pip,是安装在该环境下,受conda影响;但使用apt依然安装在系统环境下,不受conda影响。

miniconda index
① {\color{#E16B8C}{①}} ① 选择合适的miniconda版本(假定用latest);
② {\color{#E16B8C}{②}} ② 用sh安装,先用wget下载文件;

bash 复制代码
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

③ {\color{#E16B8C}{③}} ③ bash按照指引安装;

bash 复制代码
bash Miniconda3-latest-Linux-x86_64.sh

🌔02

CUDA

CUDA Toolkit Archive
① {\color{#E16B8C}{①}} ① 根据nvidia显卡驱动和ubuntu的版本选择cuda版本;
② {\color{#E16B8C}{②}} ② 使用runfile安装(以cuda11.8为例);

bash 复制代码
chmod +x cuda_11.8.0_520.61.05_linux.run
./cuda_11.8.0_520.61.05_linux.run

③ {\color{#E16B8C}{③}} ③ 创建软连接;

bash 复制代码
cd /usr/local
ln -s cuda-11.8 cuda

④ {\color{#E16B8C}{④}} ④ 设置.bashrc;

bash 复制代码
# cuda
export CUDA_HOME=/usr/local/cuda
export PATH=$CUDA_HOME/bin:$PATH
export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
export CPLUS_INCLUDE_PATH=$CUDA_HOME/include:$CPLUS_INCLUDE_PATH

🌔03

cuDNN

cuDNN Archive
① {\color{#E16B8C}{①}} ① 根据cuda版本选择cudnn版本;
② {\color{#E16B8C}{②}} ② 使用deb安装(以cudnnn8.9.7为例);

bash 复制代码
dpkg -i cudnn-local-repo-ubuntu2204-8.9.7.29_1.0-1_amd64.deb
# 具体公钥的内容参考上一语句的输出,cudnn版本不同,公钥不同
cp /var/cudnn-local-repo-ubuntu2204-8.9.7.29/cudnn-local-8AE81B24-keyring.gpg /usr/share/keyrings/
sudo apt update
sudo apt install libcudnn8
sudo apt install libcudnn8-dev
sudo apt install libcudnn8-samples

③ {\color{#E16B8C}{③}} ③设置.bashrc;

bash 复制代码
# cudnn
export CUDNN_HOME=/usr/lib/x86_64-linux-gnu
export LD_LIBRARY_PATH=$CUDNN_HOME/lib64:$LD_LIBRARY_PATH

🌔04

TensorRT

TensorRT Download
① {\color{#E16B8C}{①}} ① 根据cuda版本选择tensorrt版本;
② {\color{#E16B8C}{②}} ② 使用tar安装(以tensorrt8.6.1为例);

bash 复制代码
tar -xzvf TensorRT-8.6.1.6.Linux.x86_64-gnu.cuda-11.8.tar.gz
sudo mv TensorRT-8.6.1.6 /usr/local

③ {\color{#E16B8C}{③}} ③ 创建软连接;

bash 复制代码
cd /usr/local
ln -s TensorRT-8.6.1.6 TensorRT

④ {\color{#E16B8C}{④}} ④ 设置.bashrc;

bash 复制代码
# tensorrt
export TENSORRT_HOME=/usr/local/TensorRT
export PATH=$TENSORRT_HOME/bin:$PATH
export LD_LIBRARY_PATH=$TENSORRT_HOME/lib:$LD_LIBRARY_PATH
export CPLUS_INCLUDE_PATH=$TENSORRT_HOME/include:$CPLUS_INCLUDE_PATH

⑤ {\color{#E16B8C}{⑤}} ⑤ 安装tensorrt python;

bash 复制代码
cd /usr/local/TensorRT/python
# 根据python版本安装,我的是python3.10版本,选择cp310
# 最好退出conda环境,选择系统环境的python版本,并在系统环境安装
pip install tensorrt-8.6.1-cp310-none-linux_x86_64.whl

🌔05

Appendix

5.1 fishros

安装ros/docker/clash,配置系统/ros/docker源等可以用它。

bash 复制代码
wget http://fishros.com/install -O fishros && . fishros

5.2 proxy

写在.bashrc中,之后可以使用proxy_on和proxy_off来选择开启或关闭代理。

bash 复制代码
# >>> proxy set >>>
proxy_on() 
{
export hostip=$(cat /etc/resolv.conf | grep nameserver | awk '{print $2}')
export http_proxy="http://${hostip}:7890"
export https_proxy="http://${hostip}:7890"
export all_proxy="socks5://${hostip}:7890"
echo "代理已开启,当前代理 IP: ${hostip}"
}

proxy_off() 
{
unset http_proxy
unset https_proxy
unset all_proxy
echo "代理已关闭"
}
# <<< proxy set <<<
相关推荐
Wnq100724 小时前
世界模型 AI:认知跃迁的可行性与本质性挑战
人工智能
穷人小水滴4 小时前
科幻 「备用肉身虫」 系列设定集 (AI 摘要)
人工智能·aigc·科幻·未来·小说·设定
老赵聊算法、大模型备案5 小时前
北京市生成式人工智能服务已备案信息公告(2025年12月11日)
人工智能·算法·安全·aigc
咬人喵喵5 小时前
上下文窗口:AI 的“大脑容量”
人工智能
workflower5 小时前
时序数据获取事件
开发语言·人工智能·python·深度学习·机器学习·结对编程
weixin_446122465 小时前
一个案例验证 LLM大模型编码能力哪家强
人工智能
老蒋新思维6 小时前
创客匠人峰会深度解析:知识变现的 “信任 - 效率” 双闭环 —— 从 “单次交易” 到 “终身复购” 的增长密码
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
java1234_小锋6 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 编码器(Encoder)详解以及算法实现
深度学习·语言模型·transformer
大刘讲IT6 小时前
面向中小企业的企业AI Agent未来3年构建蓝图规划
人工智能·经验分享·ai·开源·制造
yzx9910136 小时前
深度学习的进化之路:从感知机到通用智能的曙光
人工智能·深度学习