高斯混合模型及最大期望算法(EM)聚类

混合高斯分布(Gaussian Mixture Model,GMM)是一种概率模型,用于表示具有多个高斯分布的加权组合的数据集。它被广泛应用于模式识别、聚类分析和密度估计等领域。

定义

混合高斯分布由多个单变量或多变量高斯分布的线性组合组成。数学上,混合高斯模型可以表示为:

其中:

  • K 是高斯分布的数量。

  • 是第 k 个高斯分布的权重系数,且满足

  • 是第 k 个高斯分布,其均值为 ,协方差矩阵为

参数估计

混合高斯模型的参数通常通过最大期望算法(Expectation-Maximization, EM)来估计。EM算法迭代两个步骤来更新模型参数,直到收敛:

  1. E步:计算每个数据点属于每个高斯成分的概率(责任)。

  2. M步:根据计算得到的概率更新高斯分布的参数(均值、协方差和权重系数)。

应用

混合高斯分布在以下几个方面有广泛的应用:

  1. 聚类分析:GMM可以用于软聚类(每个点属于多个簇的概率)而不仅仅是硬聚类(每个点仅属于一个簇)。

  2. 密度估计:GMM可以用来估计数据的概率密度函数,特别适用于多峰分布的数据。

  3. 模式识别:在图像处理、语音识别等领域,GMM可以用作分类器的一部分。

  4. 异常检测:通过GMM可以识别出分布中不常见的数据点作为异常点。

实例:

使用Python和Scikit-learn库实现混合高斯模型的拟合和预测:

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.mixture import GaussianMixture

# 生成示例数据
np.random.seed(0)
X = np.concatenate([np.random.randn(300, 2) * 0.75 + np.array([5, 5]),
                    np.random.randn(300, 2) * 0.25 + np.array([-5, -5]),
                    np.random.randn(300, 2) * 0.5 + np.array([5, -5])])

# 拟合混合高斯模型
gmm = GaussianMixture(n_components=3, random_state=0)
gmm.fit(X)

# 预测
labels = gmm.predict(X)

# 可视化结果
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=15)
plt.title('Gaussian Mixture Model Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
相关推荐
-To be number.wan2 分钟前
Python数据分析:时间序列数据分析
开发语言·python·数据分析
星爷AG I12 分钟前
11-7 因果(AGI基础理论)
人工智能·agi
EchoMind-Henry25 分钟前
EchoMindBot_v1.0.0 发布了
人工智能·ai·ai agent 研发手记
BlockWay25 分钟前
西甲赛程搬进平台:WEEX以竞猜开启区域合作落地
大数据·人工智能·算法·安全
HelloWorld__来都来了26 分钟前
2026.2.16 上周科研/学术热点 & 写作Ideas
人工智能·学术
Faker66363aaa30 分钟前
YOLO13-C3K2-AdditiveBlock:水果质量智能检测系统_3
python
过期的秋刀鱼!33 分钟前
神经网络-代码中的推理
人工智能·深度学习·神经网络
User_芊芊君子38 分钟前
WebSocket实时通信入门,感谢我的好搭档脉脉
网络·人工智能·websocket·网络协议·测评
KG_LLM图谱增强大模型1 小时前
OpenClaw创始人官宣加入OpenAI:从开源项目到AI智能体革命-附128页电子书OpenClaw入门到精通及安装部署指南
人工智能·开源
Asher阿舍技术站1 小时前
【AI基础学习系列】四、Prompt基础知识
人工智能·学习·prompt