高斯混合模型及最大期望算法(EM)聚类

混合高斯分布(Gaussian Mixture Model,GMM)是一种概率模型,用于表示具有多个高斯分布的加权组合的数据集。它被广泛应用于模式识别、聚类分析和密度估计等领域。

定义

混合高斯分布由多个单变量或多变量高斯分布的线性组合组成。数学上,混合高斯模型可以表示为:

其中:

  • K 是高斯分布的数量。

  • 是第 k 个高斯分布的权重系数,且满足

  • 是第 k 个高斯分布,其均值为 ,协方差矩阵为

参数估计

混合高斯模型的参数通常通过最大期望算法(Expectation-Maximization, EM)来估计。EM算法迭代两个步骤来更新模型参数,直到收敛:

  1. E步:计算每个数据点属于每个高斯成分的概率(责任)。

  2. M步:根据计算得到的概率更新高斯分布的参数(均值、协方差和权重系数)。

应用

混合高斯分布在以下几个方面有广泛的应用:

  1. 聚类分析:GMM可以用于软聚类(每个点属于多个簇的概率)而不仅仅是硬聚类(每个点仅属于一个簇)。

  2. 密度估计:GMM可以用来估计数据的概率密度函数,特别适用于多峰分布的数据。

  3. 模式识别:在图像处理、语音识别等领域,GMM可以用作分类器的一部分。

  4. 异常检测:通过GMM可以识别出分布中不常见的数据点作为异常点。

实例:

使用Python和Scikit-learn库实现混合高斯模型的拟合和预测:

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.mixture import GaussianMixture

# 生成示例数据
np.random.seed(0)
X = np.concatenate([np.random.randn(300, 2) * 0.75 + np.array([5, 5]),
                    np.random.randn(300, 2) * 0.25 + np.array([-5, -5]),
                    np.random.randn(300, 2) * 0.5 + np.array([5, -5])])

# 拟合混合高斯模型
gmm = GaussianMixture(n_components=3, random_state=0)
gmm.fit(X)

# 预测
labels = gmm.predict(X)

# 可视化结果
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=15)
plt.title('Gaussian Mixture Model Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
相关推荐
ssxueyi2 分钟前
ModelEngine + MCP:解锁 AI 应用的无限可能
人工智能·大模型·ai应用·ai开发·modelengine
wangluoqi6 分钟前
26.2.4练习总结
算法
AAD5558889910 分钟前
压接工具检测识别----RPN-R50-Caffe-C4模型训练与优化
人工智能·深度学习
流㶡11 分钟前
逻辑回归实战:从原理到不平衡数据优化(含欠拟合/过拟合诊断与召回率提升)
算法·机器学习·逻辑回归
OLOLOadsd12313 分钟前
基于NAS-FCOS的拥挤路段车辆检测系统:R50-Caffe-FPN-NASHead-GN-Head模型训练与优化_1
人工智能·深度学习
AIArchivist13 分钟前
破解肝胆慢病管理痛点,AI让长期守护更精准高效
人工智能
laplace012314 分钟前
Claude Code 逆向工程报告 笔记(学习记录)
数据库·人工智能·笔记·学习·agent·rag
Tisfy18 分钟前
LeetCode 3637.三段式数组 I:一次遍历(三种实现)
算法·leetcode·题解·模拟·数组·遍历·moines
菩提树下的凡夫20 分钟前
Python 环境管理工具
开发语言·python
遨游xyz26 分钟前
数据结构-哈希表
算法·哈希算法