高斯混合模型及最大期望算法(EM)聚类

混合高斯分布(Gaussian Mixture Model,GMM)是一种概率模型,用于表示具有多个高斯分布的加权组合的数据集。它被广泛应用于模式识别、聚类分析和密度估计等领域。

定义

混合高斯分布由多个单变量或多变量高斯分布的线性组合组成。数学上,混合高斯模型可以表示为:

其中:

  • K 是高斯分布的数量。

  • 是第 k 个高斯分布的权重系数,且满足

  • 是第 k 个高斯分布,其均值为 ,协方差矩阵为

参数估计

混合高斯模型的参数通常通过最大期望算法(Expectation-Maximization, EM)来估计。EM算法迭代两个步骤来更新模型参数,直到收敛:

  1. E步:计算每个数据点属于每个高斯成分的概率(责任)。

  2. M步:根据计算得到的概率更新高斯分布的参数(均值、协方差和权重系数)。

应用

混合高斯分布在以下几个方面有广泛的应用:

  1. 聚类分析:GMM可以用于软聚类(每个点属于多个簇的概率)而不仅仅是硬聚类(每个点仅属于一个簇)。

  2. 密度估计:GMM可以用来估计数据的概率密度函数,特别适用于多峰分布的数据。

  3. 模式识别:在图像处理、语音识别等领域,GMM可以用作分类器的一部分。

  4. 异常检测:通过GMM可以识别出分布中不常见的数据点作为异常点。

实例:

使用Python和Scikit-learn库实现混合高斯模型的拟合和预测:

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.mixture import GaussianMixture

# 生成示例数据
np.random.seed(0)
X = np.concatenate([np.random.randn(300, 2) * 0.75 + np.array([5, 5]),
                    np.random.randn(300, 2) * 0.25 + np.array([-5, -5]),
                    np.random.randn(300, 2) * 0.5 + np.array([5, -5])])

# 拟合混合高斯模型
gmm = GaussianMixture(n_components=3, random_state=0)
gmm.fit(X)

# 预测
labels = gmm.predict(X)

# 可视化结果
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=15)
plt.title('Gaussian Mixture Model Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
相关推荐
Kuo-Teng4 分钟前
LeetCode 279: Perfect Squares
java·数据结构·算法·leetcode·职场和发展
王哈哈^_^5 分钟前
YOLO11实例分割训练任务——从构建数据集到训练的完整教程
人工智能·深度学习·算法·yolo·目标检测·机器学习·计算机视觉
百锦再25 分钟前
第18章 高级特征
android·java·开发语言·后端·python·rust·django
檐下翻书17339 分钟前
从入门到精通:流程图制作学习路径规划
论文阅读·人工智能·学习·算法·流程图·论文笔记
源码之家44 分钟前
基于Python房价预测系统 数据分析 Flask框架 爬虫 随机森林回归预测模型、链家二手房 可视化大屏 大数据毕业设计(附源码)✅
大数据·爬虫·python·随机森林·数据分析·spark·flask
CoderYanger1 小时前
B.双指针——3194. 最小元素和最大元素的最小平均值
java·开发语言·数据结构·算法·leetcode·职场和发展·1024程序员节
SalvoGao1 小时前
Python学习 | 怎么理解epoch?
数据结构·人工智能·python·深度学习·学习
楚疏笃2 小时前
纯Python 实现 Word 文档转换 Markdown
python·word
搬砖者(视觉算法工程师)2 小时前
自动驾驶汽车技术的工程原理与应用
人工智能·计算机视觉·自动驾驶
谅望者2 小时前
数据分析笔记08:Python编程基础-数据类型与变量
数据库·笔记·python·数据分析·概率论