三、基于langchain使用Qwen搭建金融RAG问答机器人--检索增强生成

经过前面2节数据准备后,现在来构建检索

加载向量数据库

python 复制代码
from langchain.vectorstores import Chroma
from langchain_huggingface import HuggingFaceEmbeddings
import os

# 定义 Embeddings
embeddings = HuggingFaceEmbeddings(model_name="m3e-base")

# 向量数据库持久化路径
persist_directory = 'data_base/chroma'

# 加载数据库
vectordb = Chroma(
    persist_directory=persist_directory, 
    embedding_function=embeddings
)

定义提示词模板

要求模型使用上下文来回答问题,这个上下文就是context,也就是从向量数据检索到相关的文本片段后,回答最后的问题question

python 复制代码
from langchain.prompts import PromptTemplate

# 我们所构造的 Prompt 模板
template = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。尽量使答案简明扼要。"。
{context}
问题: {question}
有用的回答:"""

# 调用 LangChain 的方法来实例化一个 Template 对象,该对象包含了 context 和 question 两个变量,在实际调用时,这两个变量会被检索到的文档片段和用户提问填充
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)

定义大模型LLM

需要先到阿里通义千问申请账户,具体操作指引在 这里

python 复制代码
import os
os.environ["DASHSCOPE_API_KEY"] = 'sk-******'
from langchain_community.llms import Tongyi
llm = Tongyi()

定义检索问答链

python 复制代码
from langchain.chains import RetrievalQA
qa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})

对比大模型和检索生成的结果

大模型:

python 复制代码
question = "上海华铭智能终端设备股份有限公司的股东有哪些人?"
# 仅 LLM 回答效果
result = llm(question)
print("大模型回答 question 的结果:")
print(result)

检索:

python 复制代码
result = qa_chain({"query": question})
print("检索问答链回答 question 的结果:")
print(result["result"])

检索详情:

python 复制代码
print(result)
相关推荐
都叫我大帅哥21 分钟前
深度学习的"Hello World":多层感知机全解指南
python·深度学习
都叫我大帅哥26 分钟前
LangChain分层记忆解决方案:完整案例
python·langchain
小王子102431 分钟前
Django实时通信实战:WebSocket与ASGI全解析(下)
python·websocket·django
alex1001 小时前
AI Agent开发学习系列 - langchain之LCEL(5):如何创建一个Agent?
人工智能·python·语言模型·langchain·prompt·向量数据库·ai agent
吕永强1 小时前
AI 在金融:重塑金融服务的智能革命
人工智能·金融·科普
海哥编程2 小时前
Python 数据分析(二):Matplotlib 绘图
python·数据分析·matplotlib
go54631584653 小时前
Python点阵字生成与优化:从基础实现到高级渲染技术
开发语言·人工智能·python·深度学习·分类·数据挖掘
猫头虎3 小时前
2025年02月11日 Go生态洞察:Go 1.24 发布亮点全面剖析
开发语言·后端·python·golang·go·beego·go1.19
仰望天空—永强3 小时前
PS 2025【七月最新v26.5】PS铺软件安装|最新版|附带安装文件|详细安装说明|附PS插件
开发语言·图像处理·python·图形渲染·photoshop
MediaTea3 小时前
Python 库手册:xmlrpc.client 与 xmlrpc.server 模块
开发语言·python