mlr3机器学习AUC的置信区间提取

如果你在mlr3拿到机器学习的预测数据

ROC 过程原理探索

假设数据

df <- data.frame(A=iris$Sepal.Length,

group=sample(x = c(0,1),size = 150,replace = T))

分组为 0,1 # 变量A为连续性变量

library(pROC)

roc_obj <- roc(df g r o u p , d f group, df group,dfA, levels = c(0, 1),ci=T)

auc(roc_obj)

ci.auc(roc_obj)

如果你直接在机器学习拿到预测数据

fit <- lm(df g r o u p d f group~df group dfA)

pre_df <- predict(fit,df)

roc_obj_2 <- roc(df$group, pre_df, levels = c(0, 1),ci=T)

auc(roc_obj_2)

相关推荐
飞哥数智坊20 分钟前
Coze实战第13讲:飞书多维表格读取+豆包生图模型,轻松批量生成短剧封面
人工智能
newxtc1 小时前
【配置 YOLOX 用于按目录分类的图片数据集】
人工智能·目标跟踪·分类
kooboo china.2 小时前
Tailwind CSS 实战:基于 Kooboo 构建 AI 对话框页面(八):异步处理逻辑详解
前端·css·人工智能·编辑器·html·交互
newxtc2 小时前
【JJ斗地主-注册安全分析报告】
开发语言·javascript·人工智能·安全
黑码哥2 小时前
Copilot for Xcode (iOS的 AI辅助编程)
人工智能·copilot·ai编程·xcode·ai辅助编程
深科文库2 小时前
构建 MCP 服务器:第 2 部分 — 使用资源模板扩展资源
人工智能·chatgpt·llama
程序猿小D2 小时前
第22节 Node.js JXcore 打包
开发语言·人工智能·vscode·node.js·c#
ykjhr_3d2 小时前
AI 导游:开启智能旅游新时代
人工智能·旅游