mlr3机器学习AUC的置信区间提取

如果你在mlr3拿到机器学习的预测数据

ROC 过程原理探索

假设数据

df <- data.frame(A=iris$Sepal.Length,

group=sample(x = c(0,1),size = 150,replace = T))

分组为 0,1 # 变量A为连续性变量

library(pROC)

roc_obj <- roc(df g r o u p , d f group, df group,dfA, levels = c(0, 1),ci=T)

auc(roc_obj)

ci.auc(roc_obj)

如果你直接在机器学习拿到预测数据

fit <- lm(df g r o u p d f group~df group dfA)

pre_df <- predict(fit,df)

roc_obj_2 <- roc(df$group, pre_df, levels = c(0, 1),ci=T)

auc(roc_obj_2)

相关推荐
AI蜗牛之家1 小时前
Qwen系列之Qwen3解读:最强开源模型的细节拆解
人工智能·python
王上上1 小时前
【论文阅读30】Bi-LSTM(2024)
论文阅读·人工智能·lstm
殇者知忧1 小时前
【论文笔记】若干矿井粉尘检测算法概述
深度学习·神经网络·算法·随机森林·机器学习·支持向量机·计算机视觉
YunTM2 小时前
贝叶斯优化+LSTM+时序预测=Nature子刊!
人工智能·机器学习
舒一笑3 小时前
智能体革命:企业如何构建自主决策的AI代理?
人工智能
丁先生qaq4 小时前
热成像实例分割电力设备数据集(3类,838张)
人工智能·计算机视觉·目标跟踪·数据集
红衣小蛇妖4 小时前
神经网络-Day45
人工智能·深度学习·神经网络
KKKlucifer5 小时前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
DisonTangor5 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc
Biomamba生信基地6 小时前
R语言基础| 下载、安装
开发语言·r语言·生信·医药