mlr3机器学习AUC的置信区间提取

如果你在mlr3拿到机器学习的预测数据

ROC 过程原理探索

假设数据

df <- data.frame(A=iris$Sepal.Length,

group=sample(x = c(0,1),size = 150,replace = T))

分组为 0,1 # 变量A为连续性变量

library(pROC)

roc_obj <- roc(df g r o u p , d f group, df group,dfA, levels = c(0, 1),ci=T)

auc(roc_obj)

ci.auc(roc_obj)

如果你直接在机器学习拿到预测数据

fit <- lm(df g r o u p d f group~df group dfA)

pre_df <- predict(fit,df)

roc_obj_2 <- roc(df$group, pre_df, levels = c(0, 1),ci=T)

auc(roc_obj_2)

相关推荐
亚里随笔6 分钟前
AlphaEvolve:LLM驱动的算法进化革命与科学发现新范式
人工智能·算法·llm·大语言模型
Panesle7 分钟前
基于对抗性后训练的快速文本到音频生成:stable-audio-open-small 模型论文速读
人工智能·机器学习·音视频
Linux猿13 分钟前
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1商用服务体验
人工智能·华为云·华为云征文·modelartsstudio·flexus+deepseek·deepseek-v3/r1
攻城狮7号25 分钟前
一文解析13大神经网络算法模型架构
人工智能·深度学习·神经网络·机器学习
羽凌寒31 分钟前
动态范围调整(SEF算法实现)
人工智能·深度学习·计算机视觉
zyhomepage42 分钟前
科技的成就(六十八)
开发语言·人工智能·科技·算法·内容运营
数据库安全43 分钟前
美创科技针对《银行保险机构数据安全管理办法》解读
大数据·人工智能·产品运营
king of code porter1 小时前
深度学习之用CelebA_Spoof数据集搭建一个活体检测-训练好的模型用MNN来推理
人工智能·深度学习·mnn
田梓燊1 小时前
数学复习笔记 15
笔记·线性代数·机器学习
明明跟你说过1 小时前
掌握 LangChain 文档处理核心:Document Loaders 与 Text Splitters 全解析
人工智能·语言模型·自然语言处理·langchain