mlr3机器学习AUC的置信区间提取

如果你在mlr3拿到机器学习的预测数据

ROC 过程原理探索

假设数据

df <- data.frame(A=iris$Sepal.Length,

group=sample(x = c(0,1),size = 150,replace = T))

分组为 0,1 # 变量A为连续性变量

library(pROC)

roc_obj <- roc(df g r o u p , d f group, df group,dfA, levels = c(0, 1),ci=T)

auc(roc_obj)

ci.auc(roc_obj)

如果你直接在机器学习拿到预测数据

fit <- lm(df g r o u p d f group~df group dfA)

pre_df <- predict(fit,df)

roc_obj_2 <- roc(df$group, pre_df, levels = c(0, 1),ci=T)

auc(roc_obj_2)

相关推荐
yvestine18 分钟前
自然语言处理——Transformer
人工智能·深度学习·自然语言处理·transformer
SuperW1 小时前
OPENCV图形计算面积、弧长API讲解(1)
人工智能·opencv·计算机视觉
山海不说话1 小时前
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
人工智能·python·计算机视觉·视觉检测
虹科数字化与AR2 小时前
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
人工智能·ar·ar眼镜·船舶智造·数字工作流·智能装配
飞哥数智坊3 小时前
Coze实战第13讲:飞书多维表格读取+豆包生图模型,轻松批量生成短剧封面
人工智能
newxtc4 小时前
【配置 YOLOX 用于按目录分类的图片数据集】
人工智能·目标跟踪·分类
kooboo china.5 小时前
Tailwind CSS 实战:基于 Kooboo 构建 AI 对话框页面(八):异步处理逻辑详解
前端·css·人工智能·编辑器·html·交互
newxtc5 小时前
【JJ斗地主-注册安全分析报告】
开发语言·javascript·人工智能·安全