HUGGINGFACE NLP- MAIN NLP TASKS

1 Token classification

1.1 分类

1.1.1 实体命名识别 (NER): 找出句子中的实体(如人物、地点或组织)。这可以通过为每个实体或"无实体"指定一个类别的标签。

1.1.2 词性标注 (POS): 将句子中的每个单词标记为对应于特定的词性(如名词、动词、形容词等)。

1.1.3 分块(chunking): 找到属于同一实体的Token。这个任务(可结合POS或NER)可以任何将一块Token作为制定一个标签(通常是B -),另一个标签(通常I -)表示Token是否是同一块,和第三个标签(通常是O)表示Token不属于任何块。也就是标出句子中的短语块,例如名词短语(NP),动词短语(VP)等。

1.2 标签

1.2.1 不同tokenizer有不同分类标签

1.2.2 常见

O 表示这个词不对应任何实体。

B-PER/I-PER意味着这个词对应于人名实体的开头/内部。

B-ORG/I-ORG 的意思是这个词对应于组织名称实体的开头/内部。

B-LOC/I-LOC 指的是是这个词对应于地名实体的开头/内部。

B-MISC/I-MISC 表示该词对应于一个杂项实体的开头/内部。

1.3 处理数据

1.3.1 可以扩展我们的标签列表以匹配token

1.4 train

1.4.1 DataCollatorForTokenClassification. Like the DataCollatorWithPadding, it takes the tokenizer used to preprocess the inputs:

1.4.2 Metrics

To have the Trainer compute a metric every epoch,

1.5 reDefining the model

1.5.1

javascript 复制代码
id2label = {i: label for i, label in enumerate(label_names)}
label2id = {v: k for k, v in id2label.items()}


model = AutoModelForTokenClassification.from_pretrained(
    model_checkpoint,
    id2label=id2label,
    label2id=label2id,
)

1.6 Fine-tuning the model

1.6.1 TrainingArguments

1.6.2 A custom training loop

Preparing everything for training

2 微调掩码语言模型

2.1 在域内数据上微调预训练语言模型的过程通常称为 领域适应

2.2 选择用于掩码语言建模的预训练模型

相关推荐
极造数字22 分钟前
从EMS看分布式能源发展:挑战与机遇并存
人工智能·分布式·物联网·信息可视化·能源·制造
深蓝电商API32 分钟前
告别混乱文本:基于深度学习的 PDF 与复杂版式文档信息抽取
人工智能·深度学习·pdf
算家计算1 小时前
视觉-文本压缩框架——Glyph本地部署教程,以视觉压缩重塑长上下文处理范式
人工智能
qzhqbb1 小时前
神经网络—— 人工神经网络
人工智能·深度学习·神经网络
磊磊落落1 小时前
Cursor 初体验:将 React 项目从 JavaScript 升级到 TypeScript
人工智能
算家计算1 小时前
小鹏机器人真假难分引全网热议!而这只是开始......
人工智能·机器人·资讯
百锦再1 小时前
第1章 Rust语言概述
java·开发语言·人工智能·python·rust·go·1024程序员节
说私域1 小时前
开源AI智能名片链动2+1模式S2B2C商城系统下消费点评的信任构建机制研究
人工智能·开源
Victory_orsh2 小时前
“自然搞懂”深度学习(基于Pytorch架构)——010203
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
长桥夜波2 小时前
机器学习日报10
人工智能·机器学习