HUGGINGFACE NLP- MAIN NLP TASKS

1 Token classification

1.1 分类

1.1.1 实体命名识别 (NER): 找出句子中的实体(如人物、地点或组织)。这可以通过为每个实体或"无实体"指定一个类别的标签。

1.1.2 词性标注 (POS): 将句子中的每个单词标记为对应于特定的词性(如名词、动词、形容词等)。

1.1.3 分块(chunking): 找到属于同一实体的Token。这个任务(可结合POS或NER)可以任何将一块Token作为制定一个标签(通常是B -),另一个标签(通常I -)表示Token是否是同一块,和第三个标签(通常是O)表示Token不属于任何块。也就是标出句子中的短语块,例如名词短语(NP),动词短语(VP)等。

1.2 标签

1.2.1 不同tokenizer有不同分类标签

1.2.2 常见

O 表示这个词不对应任何实体。

B-PER/I-PER意味着这个词对应于人名实体的开头/内部。

B-ORG/I-ORG 的意思是这个词对应于组织名称实体的开头/内部。

B-LOC/I-LOC 指的是是这个词对应于地名实体的开头/内部。

B-MISC/I-MISC 表示该词对应于一个杂项实体的开头/内部。

1.3 处理数据

1.3.1 可以扩展我们的标签列表以匹配token

1.4 train

1.4.1 DataCollatorForTokenClassification. Like the DataCollatorWithPadding, it takes the tokenizer used to preprocess the inputs:

1.4.2 Metrics

To have the Trainer compute a metric every epoch,

1.5 reDefining the model

1.5.1

javascript 复制代码
id2label = {i: label for i, label in enumerate(label_names)}
label2id = {v: k for k, v in id2label.items()}


model = AutoModelForTokenClassification.from_pretrained(
    model_checkpoint,
    id2label=id2label,
    label2id=label2id,
)

1.6 Fine-tuning the model

1.6.1 TrainingArguments

1.6.2 A custom training loop

Preparing everything for training

2 微调掩码语言模型

2.1 在域内数据上微调预训练语言模型的过程通常称为 领域适应

2.2 选择用于掩码语言建模的预训练模型

相关推荐
二向箔reverse2 分钟前
机器学习入门:线性回归详解与实战
人工智能·机器学习
真就死难10 分钟前
Rerank 模型的其中两种路径:BERT 相似度与 CoT 推理
人工智能·机器学习·rag
无规则ai18 分钟前
AI三巨头:机器学习、深度学习与人工智能解析
人工智能·深度学习·机器学习
不剪发的Tony老师29 分钟前
字节跳动正式开源AI智能体开发平台Coze
人工智能·coze
love530love33 分钟前
Windows 如何更改 ModelScope 的模型下载缓存位置?
运维·人工智能·windows·python·缓存·modelscope
一百天成为python专家3 小时前
数据可视化
开发语言·人工智能·python·机器学习·信息可视化·numpy
金井PRATHAMA3 小时前
主要分布在背侧海马体(dHPC)CA1区域(dCA1)的时空联合细胞对NLP中的深层语义分析的积极影响和启示
人工智能·神经网络·自然语言处理
说私域3 小时前
技术赋能与营销创新:开源链动2+1模式AI智能名片S2B2C商城小程序的流量转化路径研究
人工智能·小程序·开源
倒悬于世6 小时前
开源的语音合成大模型-Cosyvoice使用介绍
人工智能·python·语音识别
pk_xz1234567 小时前
光电二极管探测器电流信号处理与指令输出系统
人工智能·深度学习·数学建模·数据挖掘·信号处理·超分辨率重建