【大模型】GraphRAG技术原理

核心概念

GraphRAG 的核心在于用大模型构建知识图谱+知识图谱聚类社区化+RAG

RAG就是输入(问题+知识)到大模型

复制代码
1-大模型自动从海量数据中构建知识图谱(提取合并实体关系)
2-聚类算法从知识图谱中聚类社区并生成社区摘要
3-输入问题,相似度算法把问题匹配图谱信息(社区摘要/节点描述),问题+图谱信息入大模型,大模型回答结果

输入IO

复制代码
输入:文本信息
输出:图数据------三元组列表(实体-关系-实体)

GraphRAG原理

构建知识图谱

图数据构建编码步骤整理

复制代码
1-输入文本,提取每个文本块的实体和关系,并对各个实体关系加描述
2-使用大模型,合并整合实体和关系以及对实体/关系的通用描述
3-输出图数据-三元组列表(实体-关系-实体)
4-生成节点embedding->图embedding,存储起来,后续local检索需要用到

节点聚类编码步骤整理

复制代码
1-分层莱顿算法对图数据聚类,划分多个社区
2-使用大模型对每个社区搞出社区报告
3-使用大模型对社区报告提炼社区摘要
3-社区摘要生成社区embedding,存储起来,后续global检索需要用到

查询知识图谱

全局搜索

总结全文、文章主题等全局问题

复制代码
1-使用大模型,输入问题+所有社区摘要
2-输出答案

局部搜索

复制代码
1-问题embedding
2-对问题embedding 进行 社区embedding+图embedding的相似度匹配,提取出和问题相似的社区摘要图谱信息
3-使用大模型,输入问题+社区摘要图谱信息
4-输出答案

GraphRAG使用实操

流程

复制代码
本地大模型部署graphrag
第一步:启动大模型的openai服务,方法很多:vIlm启动,fastchat启动,Ilama-factory启动
第二步:启动embedding模型的openai服务,方法:fastchat,目前似乎只支持bge系列,最好使用fastchat==0.2.35
第三步:安装依赖,更改配置,开始
第四步:解决报错
第五步:ok

未完待续

相关推荐
DeepSeek-大模型系统教程6 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
小雷FansUnion8 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
静心问道13 小时前
STEP-BACK PROMPTING:退一步:通过抽象在大型语言模型中唤起推理能力
人工智能·语言模型·大模型
静心问道19 小时前
APE:大语言模型具有人类水平的提示工程能力
人工智能·算法·语言模型·大模型
cooldream200920 小时前
华为云Flexus+DeepSeek征文|利用华为云一键部署 Dify 平台并接入 DeepSeek 大模型,构建长篇文章生成助手
大模型·华为云·dify
静心问道1 天前
SELF-INSTRUCT:使用自生成指令对齐语言模型
人工智能·语言模型·大模型
大模型铲屎官11 天前
【Go语言-Day 7】循环控制全解析:从 for 基础到 for-range 遍历与高级控制
开发语言·人工智能·后端·golang·大模型·go语言·循环控制
玩电脑的辣条哥11 天前
AI-Sphere-Butler之如何将豆包桌面版对接到AI全能管家~新玩法(一)
人工智能·大模型·豆包·ai全能管家·豆包助手
喜欢吃豆11 天前
快速手搓一个MCP服务指南(一):FastMCP 快速入门指南详解
网络·人工智能·python·深度学习·大模型·mcp