【大模型】GraphRAG技术原理

核心概念

GraphRAG 的核心在于用大模型构建知识图谱+知识图谱聚类社区化+RAG

RAG就是输入(问题+知识)到大模型

复制代码
1-大模型自动从海量数据中构建知识图谱(提取合并实体关系)
2-聚类算法从知识图谱中聚类社区并生成社区摘要
3-输入问题,相似度算法把问题匹配图谱信息(社区摘要/节点描述),问题+图谱信息入大模型,大模型回答结果

输入IO

复制代码
输入:文本信息
输出:图数据------三元组列表(实体-关系-实体)

GraphRAG原理

构建知识图谱

图数据构建编码步骤整理

复制代码
1-输入文本,提取每个文本块的实体和关系,并对各个实体关系加描述
2-使用大模型,合并整合实体和关系以及对实体/关系的通用描述
3-输出图数据-三元组列表(实体-关系-实体)
4-生成节点embedding->图embedding,存储起来,后续local检索需要用到

节点聚类编码步骤整理

复制代码
1-分层莱顿算法对图数据聚类,划分多个社区
2-使用大模型对每个社区搞出社区报告
3-使用大模型对社区报告提炼社区摘要
3-社区摘要生成社区embedding,存储起来,后续global检索需要用到

查询知识图谱

全局搜索

总结全文、文章主题等全局问题

复制代码
1-使用大模型,输入问题+所有社区摘要
2-输出答案

局部搜索

复制代码
1-问题embedding
2-对问题embedding 进行 社区embedding+图embedding的相似度匹配,提取出和问题相似的社区摘要图谱信息
3-使用大模型,输入问题+社区摘要图谱信息
4-输出答案

GraphRAG使用实操

流程

复制代码
本地大模型部署graphrag
第一步:启动大模型的openai服务,方法很多:vIlm启动,fastchat启动,Ilama-factory启动
第二步:启动embedding模型的openai服务,方法:fastchat,目前似乎只支持bge系列,最好使用fastchat==0.2.35
第三步:安装依赖,更改配置,开始
第四步:解决报错
第五步:ok

未完待续

相关推荐
CoderJia程序员甲1 小时前
GitHub 热榜项目 - 日榜(2026-1-9)
开源·大模型·llm·github·ai教程
喜欢吃豆3 小时前
深度解析:FFmpeg 远程流式解复用原理与工程实践
人工智能·架构·ffmpeg·大模型·音视频·多模态
_OP_CHEN6 小时前
【Coze智能体开发】(二)从 0 到 1 精通 Coze 智能体开发:基础到实战全攻略,新手也能快速上手!
人工智能·大模型·大语言模型·模型优化·扣子平台·智能体开发·智能体调试
Haooog6 小时前
Spring AI 与 LangChain4j 对比
人工智能·大模型·springai·langchain4j
TGITCIC16 小时前
讲透知识图谱Neo4j在构建Agent时到底怎么用(二)
人工智能·知识图谱·neo4j·ai agent·ai智能体·大模型落地·graphrag
MonkeyKing_sunyuhua1 天前
大模型常见的专用名词
大模型
大模型真好玩1 天前
大模型训练全流程实战指南(一)——为什么要学习大模型训练?
人工智能·pytorch·python·大模型·deep learning
悟乙己1 天前
使用TimeGPT进行时间序列预测案例解析
机器学习·大模型·llm·时间序列·预测
数据饕餮1 天前
提示词工程实训营09- 4.2 风格模仿与调整——从“千篇一律“到“风格百变“的AI魔法
大模型·提示词工程
桃子叔叔1 天前
基于SWIFT框架的预训练微调和推理实战指南之完整实战项目
大模型·swift