反归一化 from sklearn.preprocessing import MinMaxScaler

复制代码
from sklearn.preprocessing import MinMaxScaler
复制代码
# 数据归一化
scaler = MinMaxScaler(feature_range=(0, 1))
scaler.fit_transform(dataset)
train = scaler.transform(train)
val = scaler.transform(val)
test = scaler.transform(test)
复制代码
data_range = MinMaxScaler.data_range_
data_min = MinMaxScaler.data_min_
outputs = outputs * data_range[0] + data_min[0]
y_val = y_val * data_range[0] + data_min[0]
相关推荐
CareyWYR13 分钟前
每周AI论文速递(250811-250815)
人工智能
AI精钢18 分钟前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网
whaosoft-14329 分钟前
51c自动驾驶~合集14
人工智能
C++、Java和Python的菜鸟33 分钟前
第六章 统计初步
算法·机器学习·概率论
Cx330❀33 分钟前
【数据结构初阶】--排序(五):计数排序,排序算法复杂度对比和稳定性分析
c语言·数据结构·经验分享·笔记·算法·排序算法
散11243 分钟前
01数据结构-Prim算法
数据结构·算法·图论
Jinkxs1 小时前
自动化测试的下一站:AI缺陷检测工具如何实现“bug提前预警”?
人工智能·自动化
小幽余生不加糖1 小时前
电路方案分析(二十二)适用于音频应用的25-50W反激电源方案
人工智能·笔记·学习·音视频
起个昵称吧1 小时前
线程相关编程、线程间通信、互斥锁
linux·算法
柠檬味拥抱2 小时前
优化AI智能体行为:Q学习、深度Q网络与动态规划在复杂任务中的研究
人工智能