opengl 着色器 (四)最终章收尾

颜色属性

在前面的教程中,我们了解了如何填充VBO、配置顶点属性指针以及如何把它们都储存到一个VAO里。这次,我们同样打算把颜色数据加进顶点数据中。我们将把颜色数据添加3个float值到vertices数组。我们将把三角形的三个角分别指定为红色、绿色和蓝色:

float vertices[] = {
    // 位置              // 颜色
     0.5f, -0.5f, 0.0f,  1.0f, 0.0f, 0.0f,   // 右下
    -0.5f, -0.5f, 0.0f,  0.0f, 1.0f, 0.0f,   // 左下
     0.0f,  0.5f, 0.0f,  0.0f, 0.0f, 1.0f    // 顶部
};

由于现在有更多的数据要发送到顶点着色器,我们有必要去调整一下顶点着色器,使它能够接收颜色值作为一个顶点属性输入。需要注意的是我们用layout标识符来把aColor属性的位置值设置为1:

#version 330 core
layout (location = 0) in vec3 aPos;   // 位置变量的属性位置值为 0 
layout (location = 1) in vec3 aColor; // 颜色变量的属性位置值为 1

out vec3 ourColor; // 向片段着色器输出一个颜色

void main()
{
    gl_Position = vec4(aPos, 1.0);
    ourColor = aColor; // 将ourColor设置为我们从顶点数据那里得到的输入颜色
}

layout关键字为顶点着色器的输入属性指定了location值。location值是一个整数,它指定了顶点数据在顶点缓冲区中的位置或索引,以及这些数据如何与顶点着色器的输入变量关联起来。

  • layout (location = 0) in vec3 aPos; 表示顶点数据中的第一个分量(通常是一个三维向量)被用作位置(aPos),并且这个分量在顶点缓冲区中的位置索引是0。
  • layout (location = 1) in vec3 aColor; 表示顶点数据中的第二个分量(也是一个三维向量)被用作颜色(aColor),并且这个分量在顶点缓冲区中的位置索引是1。

这种指定方式允许顶点数据按照特定的顺序和格式被发送到GPU,顶点着色器则根据这些location值来读取和处理这些数据。

通过这种方式,开发者可以确保无论顶点数据的实际存储顺序如何,着色器都能正确地访问到预期的数据。这对于在多个着色器之间传递数据、或者在使用不同的渲染管线时保持数据一致性非常有用。听不懂没关系,我们继续往下看。

由于我们不再使用uniform来传递片段的颜色了,现在使用ourColor输出变量,我们必须再修改一下片段着色器:

#version 330 core
out vec4 FragColor;  
in vec3 ourColor;

void main()
{
    FragColor = vec4(ourColor, 1.0);
}

因为我们添加了另一个顶点属性,并且更新了VBO的内存,我们就必须重新配置顶点属性指针。更新后的VBO内存中的数据现在看起来像这样:

知道了现在使用的布局,我们就可以使用glVertexAttribPointer函数更新顶点格式,

// 位置属性
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);
// 颜色属性
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)(3* sizeof(float)));
glEnableVertexAttribArray(1);

在这里,你还记得上面讲的**layout关键字** 指定了location值么。

layout (location = 0) in vec3 aPos;   // 位置变量的属性位置值为 0 
layout (location = 1) in vec3 aColor; // 颜色变量的属性位置值为 1

对,就是它,我们详细讲一下这些参数。

  • glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
    • 第一个参数0是顶点属性的位置索引(location),它对应于顶点着色器中通过layout(location = 0)指定的输入变量,如果是1 那就是颜色索引,通过layout(location = 1)指定的输入变量。
    • 第二个参数3表示每个顶点属性的组件数量,这里是3个,对应于一个三维向量(x, y, z)。
    • 第三个参数GL_FLOAT指定了顶点属性数据的类型,这里是浮点数。
    • 第四个参数GL_FALSE表示顶点数据在传递给顶点着色器之前不需要被标准化(即,数据将以其原始格式传递)。
    • 第五个参数6 * sizeof(float)是步长(stride),它表示连续顶点属性组之间的字节偏移量。这里,每个顶点由6个浮点数组成(3个用于位置,3个用于颜色),所以步长是6个浮点数的大小。
    • 第六个参数(void*)0是偏移量(offset),它表示从当前绑定的VBO的起始位置到第一个顶点属性的字节偏移量。这里,位置属性是第一个,所以偏移量是0。
  • glEnableVertexAttribArray(0);
    • 这个函数启用了位置属性数组,使其在接下来的渲染调用中可用。

由于我们现在有了两个顶点属性,我们不得不重新计算步长 值。为获得数据队列中下一个属性值(比如位置向量的下个x分量)我们必须向右移动6个float,其中3个是位置值,另外3个是颜色值。这使我们的步长值为6乘以float的字节数(=24字节)。

同样,这次我们必须指定一个偏移量。对于每个顶点来说,位置顶点属性在前,所以它的偏移量是0。颜色属性紧随位置数据之后,所以偏移量就是3 * sizeof(float),用字节来计算就是12字节。

运行程序你应该会看到如下结果:

如果你在哪卡住了,可以查看以下源码

#include <glad/glad.h>
#include <GLFW/glfw3.h>

#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow *window);

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

const char *vertexShaderSource ="#version 330 core\n"
    "layout (location = 0) in vec3 aPos;\n"
    "layout (location = 1) in vec3 aColor;\n"
    "out vec3 ourColor;\n"
    "void main()\n"
    "{\n"
    "   gl_Position = vec4(aPos, 1.0);\n"
    "   ourColor = aColor;\n"
    "}\0";

const char *fragmentShaderSource = "#version 330 core\n"
    "out vec4 FragColor;\n"
    "in vec3 ourColor;\n"
    "void main()\n"
    "{\n"
    "   FragColor = vec4(ourColor, 1.0f);\n"
    "}\n\0";

int main()
{
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

#ifdef __APPLE__
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif

    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);

    // glad: load all OpenGL function pointers
    // ---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

    // build and compile our shader program
    // ------------------------------------
    // vertex shader
    unsigned int vertexShader = glCreateShader(GL_VERTEX_SHADER);
    glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
    glCompileShader(vertexShader);
    // check for shader compile errors
    int success;
    char infoLog[512];
    glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
    if (!success)
    {
        glGetShaderInfoLog(vertexShader, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
    }
    // fragment shader
    unsigned int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
    glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);
    glCompileShader(fragmentShader);
    // check for shader compile errors
    glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);
    if (!success)
    {
        glGetShaderInfoLog(fragmentShader, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
    }
    // link shaders
    unsigned int shaderProgram = glCreateProgram();
    glAttachShader(shaderProgram, vertexShader);
    glAttachShader(shaderProgram, fragmentShader);
    glLinkProgram(shaderProgram);
    // check for linking errors
    glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);
    if (!success) {
        glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
    }
    glDeleteShader(vertexShader);
    glDeleteShader(fragmentShader);

    // set up vertex data (and buffer(s)) and configure vertex attributes
    // ------------------------------------------------------------------
    float vertices[] = {
        // positions         // colors
         0.5f, -0.5f, 0.0f,  1.0f, 0.0f, 0.0f,  // bottom right
        -0.5f, -0.5f, 0.0f,  0.0f, 1.0f, 0.0f,  // bottom left
         0.0f,  0.5f, 0.0f,  0.0f, 0.0f, 1.0f   // top 

    };

    unsigned int VBO, VAO;
    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);
    // bind the Vertex Array Object first, then bind and set vertex buffer(s), and then configure vertex attributes(s).
    glBindVertexArray(VAO);

    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

    // position attribute
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);
    // color attribute
    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)(3 * sizeof(float)));
    glEnableVertexAttribArray(1);

    // You can unbind the VAO afterwards so other VAO calls won't accidentally modify this VAO, but this rarely happens. Modifying other
    // VAOs requires a call to glBindVertexArray anyways so we generally don't unbind VAOs (nor VBOs) when it's not directly necessary.
    // glBindVertexArray(0);

    // as we only have a single shader, we could also just activate our shader once beforehand if we want to 
    glUseProgram(shaderProgram);

    // render loop
    // -----------
    while (!glfwWindowShouldClose(window))
    {
        // input
        // -----
        processInput(window);

        // render
        // ------
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT);

        // render the triangle
        glBindVertexArray(VAO);
        glDrawArrays(GL_TRIANGLES, 0, 3);

        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    // optional: de-allocate all resources once they've outlived their purpose:
    // ------------------------------------------------------------------------
    glDeleteVertexArrays(1, &VAO);
    glDeleteBuffers(1, &VBO);
    glDeleteProgram(shaderProgram);

    // glfw: terminate, clearing all previously allocated GLFW resources.
    // ------------------------------------------------------------------
    glfwTerminate();
    return 0;
}

// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);
}

// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    // make sure the viewport matches the new window dimensions; note that width and 
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}

我们自己的着色器类

前面看到我们编写自己的着色器类很麻烦,类似这样

const char *vertexShaderSource ="#version 330 core\n"
    "layout (location = 0) in vec3 aPos;\n"
    "layout (location = 1) in vec3 aColor;\n"
    "out vec3 ourColor;\n"
    "void main()\n"
    "{\n"
    "   gl_Position = vec4(aPos, 1.0);\n"
    "   ourColor = aColor;\n"
    "}\0";

但我们不可能每次编写到要这样写对吧,所以,我们自己写一个方法,把它写到像cpp的文件里一样,它可以从硬盘读取着色器,然后编译并链接它们,并对它们进行错误检测,这就变得很好用了。

我们会把着色器类全部放在在头文件里,主要是为了学习用途,当然也方便移植。我们先来添加必要的include,并定义类结构:

#ifndef SHADER_H
#define SHADER_H

#include <glad/glad.h>; // 包含glad来获取所有的必须OpenGL头文件

#include <string>
#include <fstream>
#include <sstream>
#include <iostream>


class Shader
{
public:
    // 程序ID
    unsigned int ID;

    // 构造器读取并构建着色器
    Shader(const char* vertexPath, const char* fragmentPath);
    // 使用/激活程序
    void use();
    // uniform工具函数
    void setBool(const std::string &name, bool value) const;  
    void setInt(const std::string &name, int value) const;   
    void setFloat(const std::string &name, float value) const;
};

#endif

在上面,我们在头文件顶部使用了几个预处理指令(Preprocessor Directives)。这些预处理指令会告知你的编译器只在它没被包含过的情况下才包含和编译这个头文件,即使多个文件都包含了这个着色器头文件。它是用来防止链接冲突的。

着色器类储存了着色器程序的ID。它的构造器需要顶点和片段着色器源代码的文件路径,这样我们就可以把源码的文本文件储存在硬盘上了。除此之外,为了让我们的生活更轻松一点,还加入了一些工具函数:use用来激活着色器程序,所有的set...函数能够查询一个unform的位置值并设置它的值。

从文件读取

我们使用C++文件流读取着色器内容,储存到几个string对象里:

Shader(const char* vertexPath, const char* fragmentPath)
{
    // 1. 从文件路径中获取顶点/片段着色器
    std::string vertexCode;
    std::string fragmentCode;
    std::ifstream vShaderFile;
    std::ifstream fShaderFile;
    // 保证ifstream对象可以抛出异常:
    vShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
    fShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
    try 
    {
        // 打开文件
        vShaderFile.open(vertexPath);
        fShaderFile.open(fragmentPath);
        std::stringstream vShaderStream, fShaderStream;
        // 读取文件的缓冲内容到数据流中
        vShaderStream << vShaderFile.rdbuf();
        fShaderStream << fShaderFile.rdbuf();       
        // 关闭文件处理器
        vShaderFile.close();
        fShaderFile.close();
        // 转换数据流到string
        vertexCode   = vShaderStream.str();
        fragmentCode = fShaderStream.str();     
    }
    catch(std::ifstream::failure e)
    {
        std::cout << "ERROR::SHADER::FILE_NOT_SUCCESFULLY_READ" << std::endl;
    }
    const char* vShaderCode = vertexCode.c_str();
    const char* fShaderCode = fragmentCode.c_str();
    [...]

下一步,我们需要编译和链接着色器。注意,我们也将检查编译/链接是否失败,如果失败则打印编译时错误,调试的时候这些错误输出会及其重要(你总会需要这些错误日志的):

// 2. 编译着色器
unsigned int vertex, fragment;
int success;
char infoLog[512];

// 顶点着色器
vertex = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertex, 1, &vShaderCode, NULL);
glCompileShader(vertex);
// 打印编译错误(如果有的话)
glGetShaderiv(vertex, GL_COMPILE_STATUS, &success);
if(!success)
{
    glGetShaderInfoLog(vertex, 512, NULL, infoLog);
    std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
};

// 片段着色器也类似
[...]

// 着色器程序
ID = glCreateProgram();
glAttachShader(ID, vertex);
glAttachShader(ID, fragment);
glLinkProgram(ID);
// 打印连接错误(如果有的话)
glGetProgramiv(ID, GL_LINK_STATUS, &success);
if(!success)
{
    glGetProgramInfoLog(ID, 512, NULL, infoLog);
    std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
}

// 删除着色器,它们已经链接到我们的程序中了,已经不再需要了
glDeleteShader(vertex);
glDeleteShader(fragment);

use函数非常简单:

void use() 
{ 
    glUseProgram(ID);
}

uniform的setter函数也很类似:

void setBool(const std::string &name, bool value) const
{
    glUniform1i(glGetUniformLocation(ID, name.c_str()), (int)value); 
}
void setInt(const std::string &name, int value) const
{ 
    glUniform1i(glGetUniformLocation(ID, name.c_str()), value); 
}
void setFloat(const std::string &name, float value) const
{ 
    glUniform1f(glGetUniformLocation(ID, name.c_str()), value); 
} 

现在我们就写完了一个完整的着色器类。使用这个着色器类很简单;只要创建一个着色器对象,从那一点开始我们就可以开始使用了:

Shader ourShader("path/to/shaders/shader.vs", "path/to/shaders/shader.fs");
...
while(...)
{
    ourShader.use();
    ourShader.setFloat("someUniform", 1.0f);
    DrawStuff();
}

我们把顶点和片段着色器储存为两个叫做shader.vsshader.fs的文件。你可以使用自己喜欢的名字命名着色器文件;我自己觉得用.vs.fs作为扩展名很直观。

以下是我的代码:

#ifndef SHADER_H
#define SHADER_H

#include <glad/glad.h>

#include <string>
#include <fstream>
#include <sstream>
#include <iostream>

class Shader
{
public:
    unsigned int ID;
    // constructor generates the shader on the fly
    // ------------------------------------------------------------------------
    Shader(const char* vertexPath, const char* fragmentPath)
    {
        // 1. retrieve the vertex/fragment source code from filePath
        std::string vertexCode;
        std::string fragmentCode;
        std::ifstream vShaderFile;
        std::ifstream fShaderFile;
        // ensure ifstream objects can throw exceptions:
        vShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
        fShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
        try 
        {
            // open files
            vShaderFile.open(vertexPath);
            fShaderFile.open(fragmentPath);
            std::stringstream vShaderStream, fShaderStream;
            // read file's buffer contents into streams
            vShaderStream << vShaderFile.rdbuf();
            fShaderStream << fShaderFile.rdbuf();
            // close file handlers
            vShaderFile.close();
            fShaderFile.close();
            // convert stream into string
            vertexCode   = vShaderStream.str();
            fragmentCode = fShaderStream.str();
        }
        catch (std::ifstream::failure& e)
        {
            std::cout << "ERROR::SHADER::FILE_NOT_SUCCESSFULLY_READ: " << e.what() << std::endl;
        }
        const char* vShaderCode = vertexCode.c_str();
        const char * fShaderCode = fragmentCode.c_str();
        // 2. compile shaders
        unsigned int vertex, fragment;
        // vertex shader
        vertex = glCreateShader(GL_VERTEX_SHADER);
        glShaderSource(vertex, 1, &vShaderCode, NULL);
        glCompileShader(vertex);
        checkCompileErrors(vertex, "VERTEX");
        // fragment Shader
        fragment = glCreateShader(GL_FRAGMENT_SHADER);
        glShaderSource(fragment, 1, &fShaderCode, NULL);
        glCompileShader(fragment);
        checkCompileErrors(fragment, "FRAGMENT");
        // shader Program
        ID = glCreateProgram();
        glAttachShader(ID, vertex);
        glAttachShader(ID, fragment);
        glLinkProgram(ID);
        checkCompileErrors(ID, "PROGRAM");
        // delete the shaders as they're linked into our program now and no longer necessary
        glDeleteShader(vertex);
        glDeleteShader(fragment);
    }
    // activate the shader
    // ------------------------------------------------------------------------
    void use() 
    { 
        glUseProgram(ID); 
    }
    // utility uniform functions
    // ------------------------------------------------------------------------
    void setBool(const std::string &name, bool value) const
    {         
        glUniform1i(glGetUniformLocation(ID, name.c_str()), (int)value); 
    }
    // ------------------------------------------------------------------------
    void setInt(const std::string &name, int value) const
    { 
        glUniform1i(glGetUniformLocation(ID, name.c_str()), value); 
    }
    // ------------------------------------------------------------------------
    void setFloat(const std::string &name, float value) const
    { 
        glUniform1f(glGetUniformLocation(ID, name.c_str()), value); 
    }

private:
    // utility function for checking shader compilation/linking errors.
    // ------------------------------------------------------------------------
    void checkCompileErrors(unsigned int shader, std::string type)
    {
        int success;
        char infoLog[1024];
        if (type != "PROGRAM")
        {
            glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
            if (!success)
            {
                glGetShaderInfoLog(shader, 1024, NULL, infoLog);
                std::cout << "ERROR::SHADER_COMPILATION_ERROR of type: " << type << "\n" << infoLog << "\n -- --------------------------------------------------- -- " << std::endl;
            }
        }
        else
        {
            glGetProgramiv(shader, GL_LINK_STATUS, &success);
            if (!success)
            {
                glGetProgramInfoLog(shader, 1024, NULL, infoLog);
                std::cout << "ERROR::PROGRAM_LINKING_ERROR of type: " << type << "\n" << infoLog << "\n -- --------------------------------------------------- -- " << std::endl;
            }
        }
    }
};
#endif
相关推荐
吃豆腐长肉10 小时前
着色器 (三)
opengl·着色器
德林恩宝2 天前
WebGPU、WebGL 和 OpenGL/Vulkan对比分析
web·webgl·opengl·webgpu
zaizai10075 天前
LearnOpenGL学习(高级OpenGL -> 高级GLSL,几何着色器,实例化)
opengl
刘好念5 天前
[OpenGL] Transform feedback 介绍以及使用示例
c++·计算机图形学·opengl
爱看书的小沐5 天前
【小沐学GIS】基于C++绘制三维数字地球Earth(OpenGL、glfw、glut、QT)第三期
c++·qt·opengl·earth·osm·三维地球·数字地球
闲暇部落8 天前
OpenGL ES详解——多个纹理实现混叠显示
opengl·纹理叠加
浅陌sss8 天前
UnityShaderLab 实现黑白着色器效果
着色器
LiQingCode9 天前
OpenTK中文教程——1.7变换
c#·opengl
zaizai100710 天前
LearnOpenGL学习(高级OpenGL --> 帧缓冲,立方体贴图,高级数据)
opengl