Spark和Hive的区别

1 Hive
Hive 是基于 Hadoop 的数据仓库工具,同时又是查询引擎, Spark SQL 只是取代的 Hive 的查询引擎这一部分,企业可以使用Hive+Spark SQL 进行开发。
Hive 的主要工作如下:
把HQL 翻译长 map-reduce 的代码,并且有可能产生很多 mapreduce 的 job
把生产的Mapreduce 代码及相关资源打包成 jar 并发布到 Hadoop 的集群当中并进行运行
Hive默认情况下用 derby 存储元数据,所以在生产环境下一般会采用多用户的数据库进行元数据的存储,并可以读写分离和备份,一般使用主节点写,从节点读,一般使用MySQL 。

2 Spark
Spark SQL处理一切存储介质和各种格式的数据 ( 可以扩展 sparksql 来读取更多类型的数据 ) ;
Spark SQL把数据仓库的计算速度推向了新的高度( Tungsten 成熟之后会更厉害);
Spark SQL推出的 Dataframe 可以让数据仓库直接使用机器学习,图计算等复杂算法;
Hive+Spark SQL+DataFrame 使用:
Hive:负责廉价的数据仓库存储
Spark Sql:负责高速的计算
DataFrame:负责复杂的数据挖掘

3 Hive on Spark Spark Sql 的区别
Hive on Spark大体与 Spark SQL 结构类似,只是 SQL 解析器不同,但是计算引擎都是 Spark 。

4 Hive on Mapreduce Spark SQL 使用场景
Hive on Mapreduce 场景
Hive 的出现可以让那些精通 SQL 技能、但是不熟悉 MapReduce 、编程能力较弱与不擅长 Java 语言的用户能够在HDFS 大规模数据集上很方便地利用 SQL 语言查询、汇总、分析数据,毕竟精通 SQL 语言的人要比精通Java 语言的多得多。 Hive 适合处理离线非实时数据
Spark SQL 场景
Spark 既可以运行本地 local 模式,也可以以 Standalone 、 cluster 等多种模式运行在 Yarn 、 Mesos 上,还可以运行在云端例如EC2 。此外, Spark 的数据来源非常广泛,可以处理来自 HDFS 、 HBase 、Hive、 Cassandra 、 Tachyon 上的各种类型的数据。
实时性要求或者速度要求较高的场所

5 Hive on Mapreduce Spark SQL 性能对比
Spark SQL 和 Hive on Spark 时间差不多,但都比 Hive on mapreduce 快很多,官方数据认为 Spark 会被传统mapreduce快 10-100 倍。

相关推荐
试剂界的爱马仕12 分钟前
TCA 循环中间体如何改写肝损伤命运【AbMole】
大数据·人工智能·科技·机器学习·ai写作
Leo.yuan31 分钟前
数据湖是什么?数据湖和数据仓库的区别是什么?
大数据·运维·数据仓库·人工智能·信息可视化
hao_wujing2 小时前
基于梯度的中毒攻击
大数据·人工智能
qq_4639448613 小时前
【Spark征服之路-2.2-安装部署Spark(二)】
大数据·分布式·spark
weixin_5051544614 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
打码人的日常分享14 小时前
智慧城市建设方案
大数据·架构·智慧城市·制造
阿里云大数据AI技术16 小时前
ES Serverless 8.17王牌发布:向量检索「火力全开」,智能扩缩「秒级响应」!
大数据·运维·serverless
Mikhail_G17 小时前
Python应用变量与数据类型
大数据·运维·开发语言·python·数据分析
G皮T17 小时前
【Elasticsearch】映射:null_value 详解
大数据·elasticsearch·搜索引擎·映射·mappings·null_value
大霸王龙18 小时前
软件工程的软件生命周期通常分为以下主要阶段
大数据·人工智能·旅游