Certifying LLM Safety against Adversarial Prompting

erase-and-check

erase:逐一删除prompt中的词元(token)

check:用安全过滤器检查生成的子序列。

如果任何子序列或输入提示本身被过滤器检测为有害,则将该提示标记为有害。

如图,对有对抗性后缀的有害prompt进行 擦除并检查 :

检查两种实现方式:

  1. 使用通用的大语言模型(如Llama 2)来分类输入提示是否安全或有害。

    不需要额外训练,依赖输出文本进行简单的检查,输出中是否包含"Not harmful"等安全标记,若有,则认为prompt是安全。

  2. 对预训练模型(如DistilBERT,将其修改为分类器)进行微调,使用安全和有害提示的示例来训练。

erase-and-check 针对这3种攻击方式:

(穷举搜索)

GreedyEC使用贪心算法,通过每次删除最能增加有害类别得分的tokens来优化输出的安全性,属于局部最优策略。

GradEC通过计算梯度来优化删除哪些tokens,它的策略更加精细和全局,基于输入变化对安全性的影响做出决策

所用数据集

  • 对抗后缀:在prompt的末尾附加一个对抗性序列。

    从输入prompt的末尾逐个擦除d个令牌(最大擦除长度d),并使用过滤器is-harmful检查d个子序列,有一个就算harmful。

  • 对抗插入:在prompt的任意位置插入对抗性序列。

    从prompt的任一位置i开始擦除,最多擦除d个令牌

  • 对抗注入:在prompt中的任意位置插入对抗性词元,这些词元不一定是连续的块。

    系统会在prompt中随机"擦除"掉不超过 d 个的词,形成d个子句。只要有一个子句完全匹配上所有对抗词(对抗词数量不超过 d 个),系统就可以标记这条提示为有害。

更高效的三种经验防御

RandEC,擦除随机和检查随机的随机子抽样。

GreedyEC,它贪婪地擦除使蒸馏器安全分类器有害类的softmax分数最大化的令牌。

GradEC,使用安全过滤器相对于输入提示符的梯度来优化要擦除的令牌。

  • GreedyEC :每次只能移除当前最危险的一个

  • GradEC:每次可以基于敏感度或危险程度,同时移除最危险的几个。

https://github.com/aounon/certified-llm-safety/tree/585385ae21fc4cc4f48d2c54180a72f92fdd292f/data

数据集包括520个harmful prompts 和 520个safe prompts

相关推荐
radient1 小时前
属于Agent的课本 - RAG
人工智能·后端·程序员
第七序章1 小时前
【C + +】红黑树:全面剖析与深度学习
c语言·开发语言·数据结构·c++·人工智能
rechol1 小时前
汇编与底层编程笔记
汇编·arm开发·笔记
渡我白衣1 小时前
未来的 AI 操作系统(三)——智能的中枢:从模型到系统的统一
人工智能·深度学习·ui·语言模型·人机交互
Blossom.1181 小时前
把 AI“缝”进布里:生成式编织神经网络让布料自带摄像头
人工智能·python·单片机·深度学习·神经网络·目标检测·机器学习
曾经的三心草1 小时前
深度学习1-简介-简单实现-手写数字识别
人工智能·深度学习
拓端研究室1 小时前
专题:2025年医疗健康行业状况报告:投融资、脑机接口、AI担忧|附130+份报告PDF合集、图表下载
大数据·人工智能
盘古信息IMS2 小时前
告别 “老系统困境”!三真科技 × 盘古信息:汽车电子数字化工厂升级
人工智能·科技·汽车
Alter12302 小时前
用AI重构人机关系,OPPO智慧服务带来了更“懂你”的体验
人工智能·重构
爱看科技2 小时前
科技新突破!微美全息(NASDAQ:WIMI)研发保留运动想象脑机接口“方差密钥”技术
大数据·人工智能·科技