Certifying LLM Safety against Adversarial Prompting

erase-and-check

erase:逐一删除prompt中的词元(token)

check:用安全过滤器检查生成的子序列。

如果任何子序列或输入提示本身被过滤器检测为有害,则将该提示标记为有害。

如图,对有对抗性后缀的有害prompt进行 擦除并检查 :

检查两种实现方式:

  1. 使用通用的大语言模型(如Llama 2)来分类输入提示是否安全或有害。

    不需要额外训练,依赖输出文本进行简单的检查,输出中是否包含"Not harmful"等安全标记,若有,则认为prompt是安全。

  2. 对预训练模型(如DistilBERT,将其修改为分类器)进行微调,使用安全和有害提示的示例来训练。

erase-and-check 针对这3种攻击方式:

(穷举搜索)

GreedyEC使用贪心算法,通过每次删除最能增加有害类别得分的tokens来优化输出的安全性,属于局部最优策略。

GradEC通过计算梯度来优化删除哪些tokens,它的策略更加精细和全局,基于输入变化对安全性的影响做出决策

所用数据集

  • 对抗后缀:在prompt的末尾附加一个对抗性序列。

    从输入prompt的末尾逐个擦除d个令牌(最大擦除长度d),并使用过滤器is-harmful检查d个子序列,有一个就算harmful。

  • 对抗插入:在prompt的任意位置插入对抗性序列。

    从prompt的任一位置i开始擦除,最多擦除d个令牌

  • 对抗注入:在prompt中的任意位置插入对抗性词元,这些词元不一定是连续的块。

    系统会在prompt中随机"擦除"掉不超过 d 个的词,形成d个子句。只要有一个子句完全匹配上所有对抗词(对抗词数量不超过 d 个),系统就可以标记这条提示为有害。

更高效的三种经验防御

RandEC,擦除随机和检查随机的随机子抽样。

GreedyEC,它贪婪地擦除使蒸馏器安全分类器有害类的softmax分数最大化的令牌。

GradEC,使用安全过滤器相对于输入提示符的梯度来优化要擦除的令牌。

  • GreedyEC :每次只能移除当前最危险的一个

  • GradEC:每次可以基于敏感度或危险程度,同时移除最危险的几个。

https://github.com/aounon/certified-llm-safety/tree/585385ae21fc4cc4f48d2c54180a72f92fdd292f/data

数据集包括520个harmful prompts 和 520个safe prompts

相关推荐
oioihoii11 分钟前
AI随身翻译设备:从翻译工具到智能生活伴侣
人工智能·生活
努力当一个优秀的程序员14 分钟前
0.机器学习基础
人工智能·机器学习
XYN6131 分钟前
【嵌入式学习3】UDP发送端、接收端
网络·笔记·python·网络协议·学习·udp
tianyukun022342 分钟前
MATLAB学习笔记(二) 控制工程会用到的
笔记·学习·matlab
林麓1 小时前
C++进阶笔记第一篇:程序的内存模型
开发语言·c++·笔记
bjxiaxueliang1 小时前
一文详解OpenCV环境搭建:Ubuntu20.4使用CLion配置OpenCV开发环境
人工智能·opencv·计算机视觉
Allen_LVyingbo2 小时前
思维链编程模式下可视化医疗编程具体模块和流程架构分析(全架构与代码版)
大数据·人工智能·重构·架构·健康医疗
有一只柴犬2 小时前
5. 深度剖析:Spring AI项目架构与分层体系全解读
人工智能·spring·架构
RaLi和夕2 小时前
单片机学习笔记8.定时器
汇编·笔记·单片机·嵌入式硬件·学习
乌旭2 小时前
英伟达Blackwell架构深度拆解:新一代GPU如何突破算力瓶颈?
数据结构·人工智能·深度学习·机器学习·ai·架构·ai编程