Stealthy Attack on Large Language Model based Recommendation

传统RS依赖id信息进行推荐,攻击:生成虚假用户,这些用户对特定目标物体给于高评价,从而影响模型的训练。

基于llm的RS:llm利用语义理解,将用户兴趣转化为语义向量,通过计算用户兴趣向量与物品向量之间的相似度来进行推荐。

创新点

将LLM引入推荐系统 recommender systems (RS),存在潜在脆弱性:

攻击者可以在测试阶段改变目标项目的文本内容(标题、描述)来提高目标项目的曝光率,而不需要直接干扰模型的训练过程。攻击很隐蔽的,不会影响整体推荐性能。

如图,基于llm的RS模型的文本攻击范式。

修改目标物品的标题,误导RS模型对其进行更高的排名。修改微妙,整体推荐性能几乎没有变化。

方法

1.使用单词插入

预定义一个积极感叹词语料库。随机从语料库中挑选k个单词插入到原文内容的末尾,并保持整体的连贯性。提高目标被系统推荐的可能性。

2.利用(gpt)重写

利用GPT模型指导内容改写,生成与目标任务关联的多种改写版本,从中筛选出最符合攻击意图的结果。

文本攻击的主要组成部分

1.目标函数:用来评估最合适的文本扰动,作为搜索方法识别最优解的依据。

2.限制:确保扰动是原始输入的有效改变,强调语义保留和词性标签的一致性等方面。

3.转换:输入的扰动的过程,交换(同义词交换、词嵌入)。

4.搜索方法:迭代查询模型 ,选择转换产生的扰动,采用诸如具有单词重要性排序的贪婪方法,束搜索或遗传算法等技术。

相关推荐
kisshuan123962 小时前
【深度学习】使用RetinaNet+X101-32x4d_FPN_GHM模型实现茶芽检测与识别_1
人工智能·深度学习
Learn Beyond Limits2 小时前
解构语义:从词向量到神经分类|Decoding Semantics: Word Vectors and Neural Classification
人工智能·算法·机器学习·ai·分类·数据挖掘·nlp
崔庆才丨静觅2 小时前
0代码生成4K高清图!ACE Data Platform × SeeDream 专属方案:小白/商家闭眼冲
人工智能·api
qq_356448373 小时前
机器学习基本概念与梯度下降
人工智能
水如烟4 小时前
孤能子视角:关系性学习,“喂饭“的小孩认知
人工智能
徐_长卿4 小时前
2025保姆级微信AI群聊机器人教程:教你如何本地打造私人和群聊机器人
人工智能·机器人
XyX——4 小时前
【福利教程】一键解锁 ChatGPT / Gemini / Spotify 教育权益!TG 机器人全自动验证攻略
人工智能·chatgpt·机器人
十二AI编程5 小时前
Anthropic 封杀 OpenCode,OpenAI 闪电接盘:AI 编程生态的 48 小时闪电战
人工智能·chatgpt
CCC:CarCrazeCurator5 小时前
从 APA 到 AVP:汽车自动泊车系统技术演进与产业发展深度研究
人工智能