Stealthy Attack on Large Language Model based Recommendation

传统RS依赖id信息进行推荐,攻击:生成虚假用户,这些用户对特定目标物体给于高评价,从而影响模型的训练。

基于llm的RS:llm利用语义理解,将用户兴趣转化为语义向量,通过计算用户兴趣向量与物品向量之间的相似度来进行推荐。

创新点

将LLM引入推荐系统 recommender systems (RS),存在潜在脆弱性:

攻击者可以在测试阶段改变目标项目的文本内容(标题、描述)来提高目标项目的曝光率,而不需要直接干扰模型的训练过程。攻击很隐蔽的,不会影响整体推荐性能。

如图,基于llm的RS模型的文本攻击范式。

修改目标物品的标题,误导RS模型对其进行更高的排名。修改微妙,整体推荐性能几乎没有变化。

方法

1.使用单词插入

预定义一个积极感叹词语料库。随机从语料库中挑选k个单词插入到原文内容的末尾,并保持整体的连贯性。提高目标被系统推荐的可能性。

2.利用(gpt)重写

利用GPT模型指导内容改写,生成与目标任务关联的多种改写版本,从中筛选出最符合攻击意图的结果。

文本攻击的主要组成部分

1.目标函数:用来评估最合适的文本扰动,作为搜索方法识别最优解的依据。

2.限制:确保扰动是原始输入的有效改变,强调语义保留和词性标签的一致性等方面。

3.转换:输入的扰动的过程,交换(同义词交换、词嵌入)。

4.搜索方法:迭代查询模型 ,选择转换产生的扰动,采用诸如具有单词重要性排序的贪婪方法,束搜索或遗传算法等技术。

相关推荐
梦帮科技9 分钟前
OpenClaw 桥接调用 Windows MCP:打造你的 AI 桌面自动化助手
人工智能·windows·自动化
永远都不秃头的程序员(互关)16 分钟前
CANN模型量化赋能AIGC:深度压缩,释放生成式AI的极致性能与资源潜力
人工智能·aigc
爱华晨宇19 分钟前
CANN Auto-Tune赋能AIGC:智能性能炼金术,解锁生成式AI极致效率
人工智能·aigc
聆风吟º22 分钟前
CANN算子开发:ops-nn神经网络算子库的技术解析与实战应用
人工智能·深度学习·神经网络·cann
觉醒大王23 分钟前
强女思维:着急,是贪欲外显的相。
java·论文阅读·笔记·深度学习·学习·自然语言处理·学习方法
偷吃的耗子27 分钟前
【CNN算法理解】:CNN平移不变性详解:数学原理与实例
人工智能·算法·cnn
勾股导航27 分钟前
OpenCV图像坐标系
人工智能·opencv·计算机视觉
神的泪水29 分钟前
CANN 生态实战:`msprof-performance-analyzer` 如何精准定位 AI 应用性能瓶颈
人工智能
芷栀夏29 分钟前
深度解析 CANN 异构计算架构:基于 ACL API 的算子调用实战
运维·人工智能·开源·cann
威迪斯特29 分钟前
项目解决方案:医药生产车间AI识别建设解决方案
人工智能·ai实时识别·视频实时识别·识别盒子·识别数据分析·项目解决方案