Stealthy Attack on Large Language Model based Recommendation

传统RS依赖id信息进行推荐,攻击:生成虚假用户,这些用户对特定目标物体给于高评价,从而影响模型的训练。

基于llm的RS:llm利用语义理解,将用户兴趣转化为语义向量,通过计算用户兴趣向量与物品向量之间的相似度来进行推荐。

创新点

将LLM引入推荐系统 recommender systems (RS),存在潜在脆弱性:

攻击者可以在测试阶段改变目标项目的文本内容(标题、描述)来提高目标项目的曝光率,而不需要直接干扰模型的训练过程。攻击很隐蔽的,不会影响整体推荐性能。

如图,基于llm的RS模型的文本攻击范式。

修改目标物品的标题,误导RS模型对其进行更高的排名。修改微妙,整体推荐性能几乎没有变化。

方法

1.使用单词插入

预定义一个积极感叹词语料库。随机从语料库中挑选k个单词插入到原文内容的末尾,并保持整体的连贯性。提高目标被系统推荐的可能性。

2.利用(gpt)重写

利用GPT模型指导内容改写,生成与目标任务关联的多种改写版本,从中筛选出最符合攻击意图的结果。

文本攻击的主要组成部分

1.目标函数:用来评估最合适的文本扰动,作为搜索方法识别最优解的依据。

2.限制:确保扰动是原始输入的有效改变,强调语义保留和词性标签的一致性等方面。

3.转换:输入的扰动的过程,交换(同义词交换、词嵌入)。

4.搜索方法:迭代查询模型 ,选择转换产生的扰动,采用诸如具有单词重要性排序的贪婪方法,束搜索或遗传算法等技术。

相关推荐
这张生成的图像能检测吗1 小时前
(论文速读)RMT:Retentive+ViT的视觉新骨干
人工智能·深度学习·计算机视觉·transformer·注意力机制
七月shi人6 小时前
【AI编程工具IDE/CLI/插件专栏】-国外IDE与Cursor能力对比
ide·人工智能·ai编程·代码助手
2zcode8 小时前
基于Matlab的深度学习智能行人检测与统计系统
人工智能·深度学习·目标跟踪
weixin_464078079 小时前
机器学习sklearn:过滤
人工智能·机器学习·sklearn
weixin_464078079 小时前
机器学习sklearn:降维
人工智能·机器学习·sklearn
数据与人工智能律师9 小时前
智能合约漏洞导致的损失,法律责任应如何分配
大数据·网络·人工智能·算法·区块链
张艾拉 Fun AI Everyday9 小时前
小宿科技:AI Agent 的卖铲人
人工智能·aigc·创业创新·ai-native
zhongqu_3dnest9 小时前
三维火灾调查重建:科技赋能,探寻真相
人工智能
飞哥数智坊9 小时前
AI编程实战:写作助手进化,Trae+Kimi-K2两小时搞定“带样式复制”
人工智能·trae
木枷9 小时前
c2rust使用
人工智能·物联网·edge