Stealthy Attack on Large Language Model based Recommendation

传统RS依赖id信息进行推荐,攻击:生成虚假用户,这些用户对特定目标物体给于高评价,从而影响模型的训练。

基于llm的RS:llm利用语义理解,将用户兴趣转化为语义向量,通过计算用户兴趣向量与物品向量之间的相似度来进行推荐。

创新点

将LLM引入推荐系统 recommender systems (RS),存在潜在脆弱性:

攻击者可以在测试阶段改变目标项目的文本内容(标题、描述)来提高目标项目的曝光率,而不需要直接干扰模型的训练过程。攻击很隐蔽的,不会影响整体推荐性能。

如图,基于llm的RS模型的文本攻击范式。

修改目标物品的标题,误导RS模型对其进行更高的排名。修改微妙,整体推荐性能几乎没有变化。

方法

1.使用单词插入

预定义一个积极感叹词语料库。随机从语料库中挑选k个单词插入到原文内容的末尾,并保持整体的连贯性。提高目标被系统推荐的可能性。

2.利用(gpt)重写

利用GPT模型指导内容改写,生成与目标任务关联的多种改写版本,从中筛选出最符合攻击意图的结果。

文本攻击的主要组成部分

1.目标函数:用来评估最合适的文本扰动,作为搜索方法识别最优解的依据。

2.限制:确保扰动是原始输入的有效改变,强调语义保留和词性标签的一致性等方面。

3.转换:输入的扰动的过程,交换(同义词交换、词嵌入)。

4.搜索方法:迭代查询模型 ,选择转换产生的扰动,采用诸如具有单词重要性排序的贪婪方法,束搜索或遗传算法等技术。

相关推荐
艾醒(AiXing-w)5 分钟前
玩转大语言模型——使用langchain和Ollama本地部署大语言模型
人工智能·语言模型·langchain
我的青春不太冷22 分钟前
2025年最新在线模型转换工具优化模型ncnn,mnn,tengine,onnx
人工智能·深度学习·ncnn·mnn·在线模型转换网址
云卷云舒___________27 分钟前
【B站保姆级视频教程:Jetson配置YOLOv11环境(六)PyTorch&Torchvision安装】
人工智能·pytorch·yolo·教程·jetson·torchvision
zxfeng~32 分钟前
深度学习之“线性代数”
人工智能·python·深度学习·线性代数
油泼辣子多加37 分钟前
Diffusion--人工智能领域的革命性技术
人工智能
东锋1.32 小时前
NVIDIA (英伟达)的 GPU 产品应用领域
人工智能
小众AI4 小时前
AI-on-the-edge-device - 将“旧”设备接入智能世界
人工智能·开源·ai编程
舟寒、4 小时前
【论文分享】Ultra-AV: 一个规范化自动驾驶汽车纵向轨迹数据集
人工智能·自动驾驶·汽车
梦云澜7 小时前
论文阅读(十二):全基因组关联研究中生物通路的图形建模
论文阅读·人工智能·深度学习