Stealthy Attack on Large Language Model based Recommendation

传统RS依赖id信息进行推荐,攻击:生成虚假用户,这些用户对特定目标物体给于高评价,从而影响模型的训练。

基于llm的RS:llm利用语义理解,将用户兴趣转化为语义向量,通过计算用户兴趣向量与物品向量之间的相似度来进行推荐。

创新点

将LLM引入推荐系统 recommender systems (RS),存在潜在脆弱性:

攻击者可以在测试阶段改变目标项目的文本内容(标题、描述)来提高目标项目的曝光率,而不需要直接干扰模型的训练过程。攻击很隐蔽的,不会影响整体推荐性能。

如图,基于llm的RS模型的文本攻击范式。

修改目标物品的标题,误导RS模型对其进行更高的排名。修改微妙,整体推荐性能几乎没有变化。

方法

1.使用单词插入

预定义一个积极感叹词语料库。随机从语料库中挑选k个单词插入到原文内容的末尾,并保持整体的连贯性。提高目标被系统推荐的可能性。

2.利用(gpt)重写

利用GPT模型指导内容改写,生成与目标任务关联的多种改写版本,从中筛选出最符合攻击意图的结果。

文本攻击的主要组成部分

1.目标函数:用来评估最合适的文本扰动,作为搜索方法识别最优解的依据。

2.限制:确保扰动是原始输入的有效改变,强调语义保留和词性标签的一致性等方面。

3.转换:输入的扰动的过程,交换(同义词交换、词嵌入)。

4.搜索方法:迭代查询模型 ,选择转换产生的扰动,采用诸如具有单词重要性排序的贪婪方法,束搜索或遗传算法等技术。

相关推荐
DeeplyMind1 小时前
AMD KFD驱动技术分析16:SVM Aperture
人工智能·机器学习·amdgpu·rocm·kfd
非门由也1 小时前
《sklearn机器学习——聚类性能指标》Davies-Bouldin Index (戴维斯-博尔丁指数)
人工智能·机器学习·支持向量机
limengshi1383921 小时前
人工智能学习:LR和SVM的联系与区别?
人工智能·算法·机器学习·支持向量机
爆改模型1 小时前
【CVPR2025】计算机视觉|即插即用|DSSA:即插即用!显著提升模型性能的双重稀疏注意力模块!
人工智能·计算机视觉
2401_897930063 小时前
tensorflow常用使用场景
人工智能·python·tensorflow
deepdata_cn4 小时前
开源混合专家大语言模型(DBRX)
人工智能·语言模型
deepdata_cn4 小时前
开源本地LLM推理引擎(Cortex AI)
人工智能·推理引擎
说私域5 小时前
“互联网 +”时代商业生态变革:以开源 AI 智能名片链动 2+1 模式 S2B2C 商城小程序为例
人工智能·小程序·开源
stbomei5 小时前
AI大模型如何重塑日常?从智能办公到生活服务的5个核心改变
人工智能
酷飞飞5 小时前
错误是ModuleNotFoundError: No module named ‘pip‘解决“找不到 pip”
人工智能·python·pip