0基础跟德姆(dom)一起学AI 自然语言处理05-文本特征处理

1 什么是n-gram特征

  • 给定一段文本序列, 其中n个词或字的相邻共现特征即n-gram特征, 常用的n-gram特征是bi-gram和tri-gram特征, 分别对应n为2和3.

  • 举个例子:

    假设给定分词列表: ["是谁", "敲动", "我心"]

    对应的数值映射列表为: [1, 34, 21]

    我们可以认为数值映射列表中的每个数字是词汇特征.

    除此之外, 我们还可以把"是谁"和"敲动"两个词共同出现且相邻也作为一种特征加入到序列列表中,

    假设1000就代表"是谁"和"敲动"共同出现且相邻

    此时数值映射列表就变成了包含2-gram特征的特征列表: [1, 34, 21, 1000]

    这里的"是谁"和"敲动"共同出现且相邻就是bi-gram特征中的一个.

    "敲动"和"我心"也是共现且相邻的两个词汇, 因此它们也是bi-gram特征.

    假设1001代表"敲动"和"我心"共同出现且相邻

    那么, 最后原始的数值映射列表 [1, 34, 21] 添加了bi-gram特征之后就变成了 [1, 34, 21, 1000, 1001]

  • 提取n-gram特征:

    一般n-gram中的n取2或者3, 这里取2为例

    ngram_range = 2

    def create_ngram_set(input_list):
    """
    description: 从数值列表中提取所有的n-gram特征
    :param input_list: 输入的数值列表, 可以看作是词汇映射后的列表,
    里面每个数字的取值范围为[1, 25000]
    :return: n-gram特征组成的集合

    复制代码
      eg:
      >>> create_ngram_set([1, 3, 2, 1, 5, 3])
      {(3, 2), (1, 3), (2, 1), (1, 5), (5, 3)}
      """ 
      return set(zip(*[input_list[i:] for i in range(ngram_range)]))
  • 调用:

    input_list = [1, 3, 2, 1, 5, 3]
    res = create_ngram_set(input_list)
    print(res)

  • 输出效果:
复制代码
# 该输入列表的所有bi-gram特征
{(3, 2), (1, 3), (2, 1), (1, 5), (5, 3)}

2 文本长度规范及其作用

  • 一般模型的输入需要等尺寸大小的矩阵, 因此在进入模型前需要对每条文本数值映射后的长度进行规范, 此时将根据句子长度分布分析出覆盖绝大多数文本的合理长度, 对超长文本进行截断, 对不足文本进行补齐(一般使用数字0), 这个过程就是文本长度规范.

  • 文本长度规范的实现:

    from tensorflow.keras.preprocessing import sequence

    cutlen根据数据分析中句子长度分布,覆盖90%左右语料的最短长度.

    这里假定cutlen为10

    cutlen = 10

    def padding(x_train):
    """
    description: 对输入文本张量进行长度规范
    :param x_train: 文本的张量表示, 形如: [[1, 32, 32, 61], [2, 54, 21, 7, 19]]
    :return: 进行截断补齐后的文本张量表示
    """
    # 使用sequence.pad_sequences即可完成
    return sequence.pad_sequences(x_train, cutlen)

  • 调用:
复制代码
# 假定x_train里面有两条文本, 一条长度大于10, 一天小于10
x_train = [[1, 23, 5, 32, 55, 63, 2, 21, 78, 32, 23, 1],
           [2, 32, 1, 23, 1]]

res = padding(x_train)
print(res)
  • 输出效果:
复制代码
[[ 5 32 55 63  2 21 78 32 23  1]
 [ 0  0  0  0  0  2 32  1 23  1]]
相关推荐
程序员爱钓鱼8 分钟前
Python编程实战:用好 pdb 和 logging,程序再也不黑箱运行了
后端·python·trae
程序员爱钓鱼9 分钟前
Python编程实战:从 timeit 到 cProfile,一次搞懂代码为什么慢
后端·python·trae
Mintopia11 分钟前
⚡Trae Solo Coding 的效率法则
前端·人工智能·trae
2501_9411115116 分钟前
Python多线程与多进程:如何选择?(GIL全局解释器锁详解)
jvm·数据库·python
武子康19 分钟前
AI研究-129 Qwen2.5-Omni-7B 要点:显存、上下文、并发与成本
人工智能·深度学习·机器学习·ai·大模型·qwen·全模态
2501_9411113323 分钟前
使用Python处理计算机图形学(PIL/Pillow)
jvm·数据库·python
聚梦小课堂29 分钟前
2025.11.18 AI快讯
人工智能·语言模型·新闻资讯·ai大事件
青梅主码31 分钟前
麦肯锡联合QuantumBlack最新发布《2025年人工智能的现状:智能体、创新和转型》报告:32% 的企业预计会继续裁员
前端·人工智能·后端
CoovallyAIHub32 分钟前
基于SimCLR的自监督 YOLO:YOLOv5/8也能在低标注场景目标检测性能飙升
深度学习·算法·计算机视觉
冻感糕人~42 分钟前
Agent框架协议“三部曲”:MCP、A2A与AG-UI的协同演进
java·人工智能·学习·语言模型·大模型·agent·大模型学习