【YOLO】(基础篇一)YOLO介绍

YOLO

YOLO(You Only Look Once)是一种用于实时物体检测的算法,由Joseph Redmon等人提出。它能够同时进行物体分类和定位,并且因其速度和效率而广受赞誉。

工作原理

假设我们要对这张猫的图片完成目标检测,需要框选出其位置,我们需要得到的内容为目标框左上角的坐标和右下角的坐标,这样就可以完成唯一确定这个框,这个过程相当于是回归得到坐标结果的过程。

YOLO的名字You Only Look Once意为只看一次就好,one-stage特性意味着它将物体检测任务视为一个单一的回归问题,直接从图像像素到边界框坐标和类概率的映射。one-stage是相对于Faster-RCNN等two-stage类型的目标检测算法而言,只需要进行一次神经网络的传播即可完成整个过程,运行效率更高,适合做实时检测任务(针对视频),但相对而言,YOLO的准确率不会比two-stage类型的模型高。

检测指标

map:综合衡量精度和召回率,

IOU(Interception Of Union): 交集/并集,真实值和预测值的交并集,IOU越高越好

设定一个置信度阈值,利用这个值对预测的结果框计算其精准度和召回率,利用其构建不同阈值置信度的PR图,

对于每个类别,AP是通过计算该类别下Precision-Recall曲线下的面积得到的。Precision-Recall曲线展示了当调整分类阈值时,Precision和Recall的变化关系。AP值越高,表示模型对该类别的检测效果越好。

map就是上述PR图中面积,map的值最大值为1,越大越好

相关推荐
小宁爱Python5 分钟前
Django 从环境搭建到第一个项目
后端·python·django
JT85839617 分钟前
AI GEO 优化能否快速提升网站在搜索引擎的排名?
人工智能·搜索引擎
幂律智能19 分钟前
吾律——让普惠法律服务走进生活
人工智能·经验分享
IT_陈寒23 分钟前
Java性能优化:从这8个关键指标开始,让你的应用提速50%
前端·人工智能·后端
带娃的IT创业者26 分钟前
如何开发一个教育性质的多线程密码猜测演示器
网络·python·算法
yzx99101327 分钟前
构建未来:深度学习、嵌入式与安卓开发的融合创新之路
android·人工智能·深度学习
非门由也38 分钟前
《sklearn机器学习——特征提取》
人工智能·机器学习·sklearn
机器学习之心2 小时前
基于CNN的航空发动机剩余寿命预测 (MATLAB实现)
人工智能·matlab·cnn
钝挫力PROGRAMER2 小时前
AI中的“预训练”是什么意思
人工智能
Godspeed Zhao2 小时前
自动驾驶中的传感器技术39——Radar(0)
人工智能·机器学习·自动驾驶·毫米波雷达