【YOLO】(基础篇一)YOLO介绍

YOLO

YOLO(You Only Look Once)是一种用于实时物体检测的算法,由Joseph Redmon等人提出。它能够同时进行物体分类和定位,并且因其速度和效率而广受赞誉。

工作原理

假设我们要对这张猫的图片完成目标检测,需要框选出其位置,我们需要得到的内容为目标框左上角的坐标和右下角的坐标,这样就可以完成唯一确定这个框,这个过程相当于是回归得到坐标结果的过程。

YOLO的名字You Only Look Once意为只看一次就好,one-stage特性意味着它将物体检测任务视为一个单一的回归问题,直接从图像像素到边界框坐标和类概率的映射。one-stage是相对于Faster-RCNN等two-stage类型的目标检测算法而言,只需要进行一次神经网络的传播即可完成整个过程,运行效率更高,适合做实时检测任务(针对视频),但相对而言,YOLO的准确率不会比two-stage类型的模型高。

检测指标

map:综合衡量精度和召回率,

IOU(Interception Of Union): 交集/并集,真实值和预测值的交并集,IOU越高越好

设定一个置信度阈值,利用这个值对预测的结果框计算其精准度和召回率,利用其构建不同阈值置信度的PR图,

对于每个类别,AP是通过计算该类别下Precision-Recall曲线下的面积得到的。Precision-Recall曲线展示了当调整分类阈值时,Precision和Recall的变化关系。AP值越高,表示模型对该类别的检测效果越好。

map就是上述PR图中面积,map的值最大值为1,越大越好

相关推荐
阿里云大数据AI技术5 分钟前
[VLDB 2025]面向Flink集群巡检的交叉对比学习异常检测
大数据·人工智能·flink
a1504631 小时前
人工智能——图像梯度处理、边缘检测、绘制图像轮廓、凸包特征检测
人工智能·深度学习·计算机视觉
荼蘼1 小时前
基于 KNN 算法的手写数字识别项目实践
人工智能·算法·机器学习
赵英英俊1 小时前
Python day26
开发语言·python
你怎么知道我是队长1 小时前
python---eval函数
开发语言·javascript·python
wei_shuo1 小时前
亚马逊云科技 EC2 部署 Dify,集成 Amazon Bedrock 构建生成式 AI 应用
人工智能·amazon·amazon bedrock
ppo921 小时前
MCP简单应用:使用SpringAI + Cline + DeepSeek实现AI创建文件并写入内容
人工智能·后端
Rockson1 小时前
期货实时行情接口接入教程
python·api
云卓SKYDROID1 小时前
无人机速度模块技术要点分析
人工智能·无人机·科普·高科技·云卓科技
UQI-LIUWJ2 小时前
论文笔记:Tuning Language Models by Proxy
论文阅读·人工智能·语言模型