OpenCV-Python实战(6)——图相运算

一、加法运算

1.1 cv2.add()

python 复制代码
res = cv2.add(img1,img2,dst=None,mask=None,dtype=None)

**img1、img2:**要 add 的图像对象。(shape必须相同)

**mask:**图像掩膜。灰度图(维度为2)。

**dtype:**图像数据类型。

add 后像素值最大为255。

+ 运算后取255的余数。

python 复制代码
import cv2
import numpy as np

B = np.zeros((200,200,3),np.uint8)
G = np.zeros((200,200,3),np.uint8)
mask = np.zeros((200,200,1 ),np.uint8)

B[:,:,0]=255
G[:,:,1]=255
mask[50:150,50:150,:]=255

img_bg = cv2.add(B,G)
img_bg_mask = cv2.add(B,G,mask=mask)

cv2.imshow('B',B)
cv2.imshow('G',G)
cv2.imshow('mask',mask)
cv2.imshow('img_bg',img_bg)
cv2.imshow('img_bg_mask',img_bg_mask)
cv2.waitKey(0)
cv2.destroyAllWindows()

1.2 cv2.addWeighted()

python 复制代码
img = addWeighted(img1,alpha,img2,beta,gamma)

**img1、img2:**要融合的图像。

**alpha:**图像 1 的权重。

**beta:**图像 2 的权重。

**gamma:**图像校正值,默认为 0。

python 复制代码
import cv2
import numpy as np

cat = cv2.resize(cv2.imread('cat.png'),(500,600))
dog = cv2.resize(cv2.imread('dog.png'),(500,600))
print(cat.shape)
print(dog.shape)
cat_dog = cv2.addWeighted(cat,0.5,dog,0.5,0)
img = np.hstack((cat,dog,cat_dog))
cv2.imshow('img',img)

cv2.waitKey(0)
cv2.destroyAllWindows()

二、图像逻辑运算

2.1 and 运算

python 复制代码
img = cv2.bitwise_and(img1,img2,mask=None)

**img1、img2:**要进行 and 运算的图像对象。

**mask:**掩膜。

|-----|---|---|
| and | 1 | 0 |
| 1 | 1 | 0 |
| 0 | 0 | 0 |

任意像素值与白色像素值(1)执行 and 运算后结果为原像素值; 任意像素值与黑色像素值(0)执行 or 运算后结果为黑色像素值。

python 复制代码
import cv2
import numpy as np

lena = cv2.imread('Lena.png')
m = np.zeros(lena.shape,np.uint8)
m[200:350,200:350]=255
lena_m = cv2.bitwise_and(lena,m)

cv2.imshow('lena',lena)
cv2.imshow('m',m)
cv2.imshow('lena_m',lena_m)

cv2.waitKey(0)
cv2.destroyAllWindows()

2.2 or 运算

python 复制代码
img = cv2.bitwise_or(img1,img2,mask=None)

|----|---|---|
| or | 1 | 0 |
| 1 | 1 | 1 |
| 0 | 1 | 0 |

任意像素值与白色像素值(1)执行 or 运算后结果为白色像素值; 任意像素值与黑色像素值(0)执行 or 运算后结果为原像素值。

python 复制代码
import cv2
import numpy as np

lena = cv2.imread('Lena.png')
m = np.zeros(lena.shape,np.uint8)
m[200:350,200:350]=255
lena_m = cv2.bitwise_or(lena,m)

cv2.imshow('lena',lena)
cv2.imshow('m',m)
cv2.imshow('lena_m',lena_m)

cv2.waitKey(0)
cv2.destroyAllWindows()

2.3 not 运算

只对单张图片进行处理。

python 复制代码
img = cv2.bitwise_or(img1,mask=None)

|-----|---|---|
| not | 1 | 0 |
| | 0 | 1 |

1 转为 0,0 转为 1。

python 复制代码
import cv2
import numpy as np

lena = cv2.imread('Lena.png')
lena_m = cv2.bitwise_not(lena)

cv2.imshow('lena',lena)
cv2.imshow('lena_m',lena_m)

cv2.waitKey(0)
cv2.destroyAllWindows()

2.4 xor 运算

python 复制代码
img = cv2.bitwise_xor(img1,img2,mask=None)

|-----|---|---|
| xor | 1 | 0 |
| 1 | 0 | 1 |
| 0 | 1 | 0 |

任意像素值与白色像素值(1)执行 xor 运算后结果为 not 运算结果; 任意像素值与黑色像素值(0)执行 xor 运算后结果为原像素值

python 复制代码
import cv2
import numpy as np

lena = cv2.imread('Lena.png')
m = np.zeros(lena.shape,np.uint8)
m[200:400,:,:]=255
lena_m = cv2.bitwise_xor(lena,m)

cv2.imshow('lena',lena)
cv2.imshow('m',m)
cv2.imshow('lena_m',lena_m)

cv2.waitKey(0)
cv2.destroyAllWindows()

三、图像加密与解密

加密:img_key = img1 +img2;

解密:img_unkey = img_key + img2

这里以 img2 为马赛克背景。(注意:img1 与 img2 的 shape 要相同)

python 复制代码
import cv2
import numpy as np

lena = cv2.imread('Lena.png')
key = np.random.randint(0,256,lena.shape,np.uint8)

lena_key = cv2.bitwise_xor(lena,key)  # 加密
lena_unkey = cv2.bitwise_xor(lena_key,key)  # 解密

cv2.imshow('lena',lena)
cv2.imshow('key',key)
cv2.imshow('lena_key',lena_key)
cv2.imshow('lena_unkey',lena_unkey)

cv2.waitKey(0)
cv2.destroyAllWindows()

相关推荐
深蓝易网24 分钟前
为什么制造企业需要用MES管理系统升级改造车间
大数据·运维·人工智能·制造·devops
带娃的IT创业者26 分钟前
《Python实战进阶》No39:模型部署——TensorFlow Serving 与 ONNX
pytorch·python·tensorflow·持续部署
xiangzhihong832 分钟前
Amodal3R ,南洋理工推出的 3D 生成模型
人工智能·深度学习·计算机视觉
Bruce-li__33 分钟前
深入理解Python asyncio:从入门到实战,掌握异步编程精髓
网络·数据库·python
阿linlin39 分钟前
OpenCV--图像预处理学习01
opencv·学习·计算机视觉
九月镇灵将43 分钟前
6.git项目实现变更拉取与上传
git·python·scrapy·scrapyd·gitpython·gerapy
狂奔solar1 小时前
diffusion-vas 提升遮挡区域的分割精度
人工智能·深度学习
资源大全免费分享1 小时前
MacOS 的 AI Agent 新星,本地沙盒驱动,解锁 macOS 操作新体验!
人工智能·macos·策略模式
小张学Python1 小时前
AI数字人Heygem:口播与唇形同步的福音,无需docker,无需配置环境,一键整合包来了
python·数字人·heygem
跳跳糖炒酸奶1 小时前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人