六大基础深度神经网络之RNN

x0结果输出时,不仅会直接输出h0,还有一部分会与x1进行融合从而输出h1,x2时也同理,这样网络就会考虑到时间的前后信息

但如果输入信息很多,到x10000,那么x0的信息还需要考虑吗,有可能就根本不重要,所以就引入了LSTM(长短时记忆网络)

C为控制参数决定什么样的信息会被保留什么样的会被遗忘

⊗⊕是门,是一种让信息选择式通过的方法

相关推荐
要努力啊啊啊2 小时前
YOLOv1 技术详解:正负样本划分与置信度设计
人工智能·深度学习·yolo·计算机视觉·目标跟踪
vlln3 小时前
【论文解读】OmegaPRM:MCTS驱动的自动化过程监督,赋能LLM数学推理新高度
人工智能·深度学习·神经网络·搜索引擎·transformer
sky丶Mamba4 小时前
如何编写高效的Prompt:从入门到精通
人工智能·prompt
chilavert3185 小时前
深入剖析AI大模型:Prompt 开发工具与Python API 调用与技术融合
人工智能·python·prompt
科技林总6 小时前
支持向量机:在混沌中划出最强边界
人工智能
陈佬昔没带相机6 小时前
基于 open-webui 搭建企业级知识库
人工智能·ollama·deepseek
Mallow Flowers6 小时前
Python训练营-Day31-文件的拆分和使用
开发语言·人工智能·python·算法·机器学习
AntBlack8 小时前
Python : AI 太牛了 ,撸了两个 Markdown 阅读器 ,谈谈使用感受
前端·人工智能·后端
leo__5208 小时前
matlab实现非线性Granger因果检验
人工智能·算法·matlab
struggle20258 小时前
Burn 开源程序是下一代深度学习框架,在灵活性、效率和可移植性方面毫不妥协
人工智能·python·深度学习·rust