六大基础深度神经网络之RNN

x0结果输出时,不仅会直接输出h0,还有一部分会与x1进行融合从而输出h1,x2时也同理,这样网络就会考虑到时间的前后信息

但如果输入信息很多,到x10000,那么x0的信息还需要考虑吗,有可能就根本不重要,所以就引入了LSTM(长短时记忆网络)

C为控制参数决定什么样的信息会被保留什么样的会被遗忘

⊗⊕是门,是一种让信息选择式通过的方法

相关推荐
Blossom.11816 分钟前
基于区块链技术的供应链溯源系统:重塑信任与透明度
服务器·网络·人工智能·目标检测·机器学习·计算机视觉·区块链
说私域29 分钟前
O2O电商变现:线上线下相互导流——基于定制开发开源AI智能名片S2B2C商城小程序的研究
人工智能·小程序·开源·零售
Jamence1 小时前
多模态大语言模型arxiv论文略读(七十六)
人工智能·语言模型·自然语言处理
与火星的孩子对话1 小时前
Unity3D开发AI桌面精灵/宠物系列 【六】 人物模型 语音口型同步 LipSync 、梅尔频谱MFCC技术、支持中英文自定义编辑- 基于 C# 语言开发
人工智能·unity·c#·游戏引擎·宠物·lipsync
Data-Miner1 小时前
35页AI应用PPT《DeepSeek如何赋能职场应用》DeepSeek本地化部署与应用案例合集
人工智能
KangkangLoveNLP1 小时前
Llama:开源的急先锋
人工智能·深度学习·神经网络·算法·机器学习·自然语言处理·llama
白熊1881 小时前
【通用智能体】Serper API 详解:搜索引擎数据获取的核心工具
人工智能·搜索引擎·大模型
云卓SKYDROID2 小时前
无人机屏蔽与滤波技术模块运行方式概述!
人工智能·无人机·航电系统·科普·云卓科技
小oo呆2 小时前
【自然语言处理与大模型】向量数据库技术
数据库·人工智能·自然语言处理
RuizhiHe2 小时前
从零开始实现大语言模型(十五):并行计算与分布式机器学习
人工智能·chatgpt·llm·大语言模型·deepseek·从零开始实现大语言模型