六大基础深度神经网络之RNN

x0结果输出时,不仅会直接输出h0,还有一部分会与x1进行融合从而输出h1,x2时也同理,这样网络就会考虑到时间的前后信息

但如果输入信息很多,到x10000,那么x0的信息还需要考虑吗,有可能就根本不重要,所以就引入了LSTM(长短时记忆网络)

C为控制参数决定什么样的信息会被保留什么样的会被遗忘

⊗⊕是门,是一种让信息选择式通过的方法

相关推荐
盼小辉丶1 小时前
Wasserstein GAN(WGAN)
人工智能·神经网络·生成对抗网络
EasyCVR4 小时前
视频融合平台EasyCVR在智慧水利中的实战应用:构建全域感知与智能预警平台
人工智能·音视频
DisonTangor4 小时前
阿里开源Qwen3-Omni-30B-A3B三剑客——Instruct、Thinking 和 Captioner
人工智能·语言模型·开源·aigc
独孤--蝴蝶4 小时前
AI人工智能-机器学习-第一周(小白)
人工智能·机器学习
西柚小萌新4 小时前
【深入浅出PyTorch】--上采样+下采样
人工智能·pytorch·python
丁学文武5 小时前
大语言模型(LLM)是“预制菜”? 从应用到底层原理,在到中央厨房的深度解析
人工智能·语言模型·自然语言处理·大语言模型·大模型应用·预制菜
fie88895 小时前
基于MATLAB的声呐图像特征提取与显示
开发语言·人工智能
文火冰糖的硅基工坊6 小时前
[嵌入式系统-100]:常见的IoT(物联网)开发板
人工智能·物联网·架构
刘晓倩6 小时前
实战任务二:用扣子空间通过任务提示词制作精美PPT
人工智能
shut up6 小时前
LangChain - 如何使用阿里云百炼平台的Qwen-plus模型构建一个桌面文件查询AI助手 - 超详细
人工智能·python·langchain·智能体