六大基础深度神经网络之RNN

x0结果输出时,不仅会直接输出h0,还有一部分会与x1进行融合从而输出h1,x2时也同理,这样网络就会考虑到时间的前后信息

但如果输入信息很多,到x10000,那么x0的信息还需要考虑吗,有可能就根本不重要,所以就引入了LSTM(长短时记忆网络)

C为控制参数决定什么样的信息会被保留什么样的会被遗忘

⊗⊕是门,是一种让信息选择式通过的方法

相关推荐
Blossom.1189 分钟前
大模型在边缘计算中的部署挑战与优化策略
人工智能·python·算法·机器学习·边缘计算·pygame·tornado
HelloRevit1 小时前
机器学习、深度学习、大模型 是什么关系?
人工智能·深度学习·机器学习
共享笔记1 小时前
Adobe Photoshop Elements 2026 正式发布:AI 引擎让修图更简单!
人工智能·adobe·photoshop
芝士AI吃鱼1 小时前
我为什么做了 Cogniflow?一个开发者关于“信息流”的思考与实践
人工智能·后端·aigc
Juchecar1 小时前
文字与电的相似性:中间载体
人工智能
kyle-fang1 小时前
pytorch-张量
人工智能·pytorch·python
算家计算1 小时前
告别繁琐文档处理!PaddleOCR-VL-vLLM-OpenAI-API本地部署教程:精准解析文本/表格/公式
人工智能·开源
woshihonghonga2 小时前
Dropout提升模型泛化能力【动手学深度学习:PyTorch版 4.6 暂退法】
人工智能·pytorch·python·深度学习·机器学习
java1234_小锋2 小时前
PyTorch2 Python深度学习 - 循环神经网络(RNN)实例
python·rnn·深度学习·pytorch2
该用户已不存在2 小时前
AI编程工具大盘点,哪个最适合你
前端·人工智能·后端