六大基础深度神经网络之RNN

x0结果输出时,不仅会直接输出h0,还有一部分会与x1进行融合从而输出h1,x2时也同理,这样网络就会考虑到时间的前后信息

但如果输入信息很多,到x10000,那么x0的信息还需要考虑吗,有可能就根本不重要,所以就引入了LSTM(长短时记忆网络)

C为控制参数决定什么样的信息会被保留什么样的会被遗忘

⊗⊕是门,是一种让信息选择式通过的方法

相关推荐
珠海西格电力3 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
启途AI4 小时前
2026免费好用的AIPPT工具榜:智能演示文稿制作新纪元
人工智能·powerpoint·ppt
TH_14 小时前
35、AI自动化技术与职业变革探讨
运维·人工智能·自动化
楚来客4 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
风送雨4 小时前
FastMCP 2.0 服务端开发教学文档(下)
服务器·前端·网络·人工智能·python·ai
效率客栈老秦4 小时前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae
小和尚同志4 小时前
虽然 V0 很强大,但是ScreenshotToCode 依旧有市场
人工智能·aigc
HyperAI超神经4 小时前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm
芯盾时代4 小时前
石油化工行业网络风险解决方案
网络·人工智能·信息安全
线束线缆组件品替网4 小时前
Weidmüller 工业以太网线缆技术与兼容策略解析
网络·人工智能·电脑·硬件工程·材料工程