OpenCV-Python实战(11)——边缘检测

一、Sobel 算子

通过 X 梯度核与 Y 梯度核求得图像在,水平与垂直方向的梯度。

python 复制代码
img = cv2.Sobel(src=*,ddepth=*,dx=*,dy=*,ksize=*,scale=*,delta=*,borderType=*)

**img:**目标图像。

**src:**原始图像。

**ddepth:**目标图像深度,-1 代表与原始图像深度相同。

**dx、dy:**x或y 轴方向的求导阶数,可以为:0、1、3 等。0 表示不求导。

**ksize:**Soble核大小。

**scale:**导数计算的缩放系数,默认为:1。

**delta:**常数项,默认为:0。

**borderType:**边界样式,使用默认即可。

python 复制代码
import cv2

img = cv2.imread('jin.png')
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
# 取梯度的绝对值
dst_x = cv2.convertScaleAbs(dst_x)
dst_y = cv2.convertScaleAbs(dst_y)

dst = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)

cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
python 复制代码
import cv2

img = cv2.imread('Lena.png')[::2,::2,:]
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
# 取梯度的绝对值
dst_x = cv2.convertScaleAbs(dst_x)
dst_y = cv2.convertScaleAbs(dst_y)

dst = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)

cv2.imshow('img',img)
cv2.imshow('Sobel',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

二、Scharr 算子

python 复制代码
img = cv2.Scharr(src=*,ddepth=*,dx=*,dy=*,ksize=*,scale=*,delta=*,borderType=*)

**img:**目标图像。

**src:**原始图像。

**ddepth:**目标图像深度,-1 代表与原始图像深度相同。

**dx、dy:**x或y 轴方向的求导阶数,可以为:0、1、3 等。0 表示不求导。

**ksize:**Soble核大小。

**scale:**导数计算的缩放系数,默认为:1。

**delta:**常数项,默认为:0。

**borderType:**边界样式,使用默认即可。

python 复制代码
import cv2

img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)

# Scharr 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)

cv2.waitKey(0)
cv2.destroyAllWindows()

三、Laplacian 算子

python 复制代码
img = cv2.Laplacian(src=*,ddepth=*,ksize=*,scale=*,delta=*,borderType=*)

**img:**目标图像。

**src:**原始图像。

**ddepth:**目标图像深度,-1 代表与原始图像深度相同。

**ksize:**Soble核大小。

**scale:**导数计算的缩放系数,默认为:1。

**delta:**常数项,默认为:0。

**borderType:**边界样式,使用默认即可。

python 复制代码
import cv2

img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)

# Sobel 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)

# Laplacian 算子
dst = cv2.Laplacian(src=img,ddepth=cv2.CV_32F,ksize=3)
dst_Laplacian = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
cv2.imshow('Laplacian',dst_Laplacian)

cv2.waitKey(0)
cv2.destroyAllWindows()

四、Canny 边缘检测

python 复制代码
img = cv2.Canny(image=*,edges=*,threshold1=*,threshold2=*,apertureSize=*,L2gradient=False)

**img:**目标图像。

**image:**原始图像。

edges:边缘数。

threshold1、threshold2:minVal 和 maxVal。

apertureSize:运算符大小。

L2gradient:梯度公式:默认为False,;如果为Ture则:

python 复制代码
import cv2

img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)

# Sobel 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)

# Laplacian 算子
dst = cv2.Laplacian(src=img,ddepth=cv2.CV_32F,ksize=3)
dst_Laplacian = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
cv2.imshow('Laplacian',dst_Laplacian)

# Canny 算子
dst_Canny = cv2.Canny(image=img,threshold1=50,threshold2=100)
cv2.imshow('Canny',dst_Canny)

cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
jghhh01几秒前
基于阈值分割的车牌定位识别
图像处理·opencv·计算机视觉
pingao1413781 分钟前
从数据到预警:自动雨量监测站如何用科技解码暴雨密码
人工智能·科技
undsky_7 分钟前
【n8n教程】:执行工作流——从手动测试到生产自动化
人工智能·ai·aigc·ai编程
牛客企业服务7 分钟前
牛客AI面试蓝领案例:破解制造业招聘效率困局
人工智能·面试·职场和发展
oscar9998 分钟前
深度学习测试题与解析
人工智能·深度学习·测试题
小oo呆9 分钟前
【自然语言处理与大模型】LangChainV1.0入门指南:核心组件Models
人工智能·自然语言处理
Ama_tor10 分钟前
AI-agent|从人工智能代理角度再延伸至扣子编程
人工智能
北冥有一鲲10 分钟前
LangChain 框架前世今生:从“万能接口”到“AI 应用全家桶”
人工智能·chatgpt·langchain
MuseDAM_cc10 分钟前
企业素材找不到?DAM 3 步解决资产分散
大数据·人工智能
AI即插即用11 分钟前
即插即用系列 | 2025 RestorMixer:融合 CNN、Mamba 与 Transformer 的高效图像复原的集大成者!
人工智能·深度学习·神经网络·目标检测·计算机视觉·cnn·transformer