OpenCV-Python实战(11)——边缘检测

一、Sobel 算子

通过 X 梯度核与 Y 梯度核求得图像在,水平与垂直方向的梯度。

python 复制代码
img = cv2.Sobel(src=*,ddepth=*,dx=*,dy=*,ksize=*,scale=*,delta=*,borderType=*)

**img:**目标图像。

**src:**原始图像。

**ddepth:**目标图像深度,-1 代表与原始图像深度相同。

**dx、dy:**x或y 轴方向的求导阶数,可以为:0、1、3 等。0 表示不求导。

**ksize:**Soble核大小。

**scale:**导数计算的缩放系数,默认为:1。

**delta:**常数项,默认为:0。

**borderType:**边界样式,使用默认即可。

python 复制代码
import cv2

img = cv2.imread('jin.png')
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
# 取梯度的绝对值
dst_x = cv2.convertScaleAbs(dst_x)
dst_y = cv2.convertScaleAbs(dst_y)

dst = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)

cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
python 复制代码
import cv2

img = cv2.imread('Lena.png')[::2,::2,:]
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
# 取梯度的绝对值
dst_x = cv2.convertScaleAbs(dst_x)
dst_y = cv2.convertScaleAbs(dst_y)

dst = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)

cv2.imshow('img',img)
cv2.imshow('Sobel',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

二、Scharr 算子

python 复制代码
img = cv2.Scharr(src=*,ddepth=*,dx=*,dy=*,ksize=*,scale=*,delta=*,borderType=*)

**img:**目标图像。

**src:**原始图像。

**ddepth:**目标图像深度,-1 代表与原始图像深度相同。

**dx、dy:**x或y 轴方向的求导阶数,可以为:0、1、3 等。0 表示不求导。

**ksize:**Soble核大小。

**scale:**导数计算的缩放系数,默认为:1。

**delta:**常数项,默认为:0。

**borderType:**边界样式,使用默认即可。

python 复制代码
import cv2

img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)

# Scharr 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)

cv2.waitKey(0)
cv2.destroyAllWindows()

三、Laplacian 算子

python 复制代码
img = cv2.Laplacian(src=*,ddepth=*,ksize=*,scale=*,delta=*,borderType=*)

**img:**目标图像。

**src:**原始图像。

**ddepth:**目标图像深度,-1 代表与原始图像深度相同。

**ksize:**Soble核大小。

**scale:**导数计算的缩放系数,默认为:1。

**delta:**常数项,默认为:0。

**borderType:**边界样式,使用默认即可。

python 复制代码
import cv2

img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)

# Sobel 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)

# Laplacian 算子
dst = cv2.Laplacian(src=img,ddepth=cv2.CV_32F,ksize=3)
dst_Laplacian = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
cv2.imshow('Laplacian',dst_Laplacian)

cv2.waitKey(0)
cv2.destroyAllWindows()

四、Canny 边缘检测

python 复制代码
img = cv2.Canny(image=*,edges=*,threshold1=*,threshold2=*,apertureSize=*,L2gradient=False)

**img:**目标图像。

**image:**原始图像。

edges:边缘数。

threshold1、threshold2:minVal 和 maxVal。

apertureSize:运算符大小。

L2gradient:梯度公式:默认为False,;如果为Ture则:

python 复制代码
import cv2

img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)

# Sobel 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)

# Laplacian 算子
dst = cv2.Laplacian(src=img,ddepth=cv2.CV_32F,ksize=3)
dst_Laplacian = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
cv2.imshow('Laplacian',dst_Laplacian)

# Canny 算子
dst_Canny = cv2.Canny(image=img,threshold1=50,threshold2=100)
cv2.imshow('Canny',dst_Canny)

cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
jionghan38557 分钟前
小米在AI大模型和GPU万卡集群领域的布局
人工智能
云空14 分钟前
《计算机视觉:开启智能感知新时代》
人工智能·深度学习·神经网络·计算机视觉
电报号dapp11921 分钟前
链游破局之路:如何打破边缘化,获得更好的发展
人工智能·去中心化·区块链·智能合约
兰特RR1 小时前
卷积神经网络(CNN)模型 CIFAR-10 数据集 例子
人工智能·神经网络·cnn
m0_689618282 小时前
LCE软机器人登场!热场光控下的多模态运动传奇?
人工智能·笔记·机器学习·机器人
勤奋的小笼包2 小时前
【论文阅读】MedCLIP: Contrastive Learning from Unpaired Medical Images and Text
论文阅读·人工智能·语言模型·chatgpt·nlp·论文笔记
程序媛徐师姐2 小时前
Python基于OpenCV和wxPython的人脸识别监控打卡系统【附源码】
python·opencv·人脸识别·考勤系统·人脸识别上课考勤系统·人脸识别监控打卡系统·python人脸识别监控打卡
WangLanguager3 小时前
基于监督学习的神经网络控制算法详细介绍和例程
人工智能·神经网络·学习
张三不嚣张3 小时前
PPO(近端策略优化)算法基本原理
人工智能·算法·强化学习·游戏策划
m0_748248773 小时前
开源模型应用落地-工具使用篇-Spring AI(七)
人工智能·spring·开源