OpenCV-Python实战(11)——边缘检测

一、Sobel 算子

通过 X 梯度核与 Y 梯度核求得图像在,水平与垂直方向的梯度。

python 复制代码
img = cv2.Sobel(src=*,ddepth=*,dx=*,dy=*,ksize=*,scale=*,delta=*,borderType=*)

**img:**目标图像。

**src:**原始图像。

**ddepth:**目标图像深度,-1 代表与原始图像深度相同。

**dx、dy:**x或y 轴方向的求导阶数,可以为:0、1、3 等。0 表示不求导。

**ksize:**Soble核大小。

**scale:**导数计算的缩放系数,默认为:1。

**delta:**常数项,默认为:0。

**borderType:**边界样式,使用默认即可。

python 复制代码
import cv2

img = cv2.imread('jin.png')
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
# 取梯度的绝对值
dst_x = cv2.convertScaleAbs(dst_x)
dst_y = cv2.convertScaleAbs(dst_y)

dst = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)

cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
python 复制代码
import cv2

img = cv2.imread('Lena.png')[::2,::2,:]
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
# 取梯度的绝对值
dst_x = cv2.convertScaleAbs(dst_x)
dst_y = cv2.convertScaleAbs(dst_y)

dst = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)

cv2.imshow('img',img)
cv2.imshow('Sobel',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

二、Scharr 算子

python 复制代码
img = cv2.Scharr(src=*,ddepth=*,dx=*,dy=*,ksize=*,scale=*,delta=*,borderType=*)

**img:**目标图像。

**src:**原始图像。

**ddepth:**目标图像深度,-1 代表与原始图像深度相同。

**dx、dy:**x或y 轴方向的求导阶数,可以为:0、1、3 等。0 表示不求导。

**ksize:**Soble核大小。

**scale:**导数计算的缩放系数,默认为:1。

**delta:**常数项,默认为:0。

**borderType:**边界样式,使用默认即可。

python 复制代码
import cv2

img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)

# Scharr 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)

cv2.waitKey(0)
cv2.destroyAllWindows()

三、Laplacian 算子

python 复制代码
img = cv2.Laplacian(src=*,ddepth=*,ksize=*,scale=*,delta=*,borderType=*)

**img:**目标图像。

**src:**原始图像。

**ddepth:**目标图像深度,-1 代表与原始图像深度相同。

**ksize:**Soble核大小。

**scale:**导数计算的缩放系数,默认为:1。

**delta:**常数项,默认为:0。

**borderType:**边界样式,使用默认即可。

python 复制代码
import cv2

img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)

# Sobel 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)

# Laplacian 算子
dst = cv2.Laplacian(src=img,ddepth=cv2.CV_32F,ksize=3)
dst_Laplacian = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
cv2.imshow('Laplacian',dst_Laplacian)

cv2.waitKey(0)
cv2.destroyAllWindows()

四、Canny 边缘检测

python 复制代码
img = cv2.Canny(image=*,edges=*,threshold1=*,threshold2=*,apertureSize=*,L2gradient=False)

**img:**目标图像。

**image:**原始图像。

edges:边缘数。

threshold1、threshold2:minVal 和 maxVal。

apertureSize:运算符大小。

L2gradient:梯度公式:默认为False,;如果为Ture则:

python 复制代码
import cv2

img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)

# Sobel 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)

# Laplacian 算子
dst = cv2.Laplacian(src=img,ddepth=cv2.CV_32F,ksize=3)
dst_Laplacian = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
cv2.imshow('Laplacian',dst_Laplacian)

# Canny 算子
dst_Canny = cv2.Canny(image=img,threshold1=50,threshold2=100)
cv2.imshow('Canny',dst_Canny)

cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
平和男人杨争争18 分钟前
机器学习2——贝叶斯理论下
人工智能·机器学习
静心问道19 分钟前
XLSR-Wav2Vec2:用于语音识别的无监督跨语言表示学习
人工智能·学习·语音识别
算家计算23 分钟前
5 秒预览物理世界,2 行代码启动生成——ComfyUI-Cosmos-Predict2 本地部署教程,重塑机器人训练范式!
人工智能·开源
摆烂工程师24 分钟前
国内如何安装和使用 Claude Code 教程 - Windows 用户篇
人工智能·ai编程·claude
云天徽上9 天前
【目标检测】图像处理基础:像素、分辨率与图像格式解析
图像处理·人工智能·目标检测·计算机视觉·数据可视化
Vertira9 天前
PyTorch中的permute, transpose, view, reshape和flatten函数详解(已解决)
人工智能·pytorch·python
heimeiyingwang9 天前
【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
人工智能·深度学习·算法
lsd&xql9 天前
AI大模型(四)openAI应用实战
人工智能
飞哥数智坊9 天前
AI编程实战:使用Cursor,65分钟轻松打造番茄时钟应用
人工智能
匿名的魔术师9 天前
实验问题记录:PyTorch Tensor 也会出现 a = b 赋值后,修改 a 会影响 b 的情况
人工智能·pytorch·python