五模型对比!Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量时间序列预测

目录

预测效果








基本介绍

光伏功率预测!五模型对比!Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量时间序列预测(Matlab2023b 多输入单输出)

1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式为excel!!!

2.Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量时序光伏功率预测 (Matlab2023b 多输入单输出),考虑历史特征的影响。

3.运行环境要求MATLAB版本为2023b及其以上。

4.评价指标包括:R2、MAE、MSE、RPD、RMSE、MAPE等,图很多,符合您的需要代码中文注释清晰,质量极高。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab基于Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量时间序列预测
matlab 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
result = xlsread('北半球光伏数据.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数
kim = 2;                       % 延时步长(前面多行历史数据作为自变量)
zim = 1;                       % 跨zim个时间点进行预测
nim = size(result, 2) - 1;     % 原始数据的特征是数目

%%  划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1 + zim, 1: end - 1)', 1, ...
        (kim + zim) * nim), result(i + kim + zim - 1, end)];
end

%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征长度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

1\] http://t.csdn.cn/pCWSp \[2\] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
机器学习之心8 小时前
SHAP分析!Transformer-GRU组合模型SHAP分析,模型可解释不在发愁!
深度学习·gru·transformer·shap分析
四口鲸鱼爱吃盐12 小时前
CVPR2025 | Prompt-CAM: 让视觉 Transformer 可解释以进行细粒度分析
深度学习·prompt·transformer
sbc-study17 小时前
大规模预训练范式(Large-scale Pre-training)
gpt·学习·transformer
jzwei0231 天前
Transformer Decoder-Only 参数量计算
人工智能·深度学习·transformer
music&movie1 天前
手写系列——transformer网络完成加法和字符转译任务
网络·人工智能·transformer
就决定是你啦!2 天前
深入解析 Vision Transformer (ViT) 与其在计算机视觉中的应用
深度学习·计算机视觉·transformer
Code_流苏2 天前
《Python星球日记》 第54天:卷积神经网络进阶
python·cnn·数据增强·图像分类·alexnet·lenet-5·vgg
shadowtalon2 天前
基于CNN的猫狗图像分类系统
人工智能·深度学习·神经网络·机器学习·计算机视觉·分类·cnn
豆芽8192 天前
Vision Transformer(ViT)
人工智能·深度学习·目标检测·计算机视觉·transformer
誉鏐2 天前
为什么Transformer推理需要做KV缓存
人工智能·深度学习·大模型·transformer